Log in

An universal in-situ phosphating strategy to fabricate high-performance Co2P-based bifunctional oxygen electrocatalyst derived from conjugated polyaniline-phytic acid copolymer

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Electrocatalysts play a crucial role in the performance of rechargeable Zn-air batteries (ZABs), but it is still difficult to produce nonprecious materials with excellent bifunctional oxygen reduction reactions (ORR) and oxygen evolution reactions (OER). Herein, conjugated polyaniline-phytic acid polymer (pANI-PA) was directly calcined to fabricate Co2P nanoparticles embedded in N, P-doped carbon network composites (Co2P@pDC-PA) for metal-air cathodes. The resulting pANI-PA derived Co2P-based carbon composite exhibits exceptional bifunctional ORR/OER activities with a half-wave potential of 0.79 V for ORR and 1.62 V of over-potential for OER at 10 mA·cm−2. Owing to the synergistic effect of its unique three-dimensional (3D) structure, N, P-doped carbon framework, and encapsulated Co2P nanoparticles, as-fabricated composite can be used as a highly efficient air cathode in the rechargeable metal-air battery. The assembled rechargeable ZAB demonstrates a high-power density of 190.0 mW·cm−2 and remarkable cycling stability over 1000 h. This study introduced a novel approach that paves the way for the efficient, cost-effective, and scalable production of bifunctional electrocatalysts for rechargeable ZABs.

Graphical abstract

摘要

具有双功能氧还原(ORR)/氧析出(OER)的电催化剂对二次锌-空气电池(ZABs)的性能起着至关重要的作用。因此,开发成本低廉、性能优异的双功能ORR/OER活性电催化材料引起了学者广泛的关注。本文以共轭聚苯胺-植酸聚合物(pANI-PA)锚定金属钴离子,直接煅烧制备了N, P共掺杂碳负载Co2P纳米颗粒复合材料(Co2P@pDC-PA),所制备的pANI-PA衍生碳基Co2P复合材料表现出优异的双功能ORR/OER活性,ORR的半波电位为0.79 V,在10 mA‧cm-2下,OER的过电位为1.62 V。所制备复合材料维持了共轭聚苯胺-植酸聚合物的三维结构,衍生碳材料将Co2P纳米颗粒封装,形成了碳包覆结构。所制备的pANI-PA衍生Co2P基碳复合材料展现出优异的ORR/OER双功能活性和循环稳定性,以其作为二次锌-空气电池空气阴极活性组分展现出了190.0 mW‧cm-2的高功率密度和超长的充放电稳定性(超过1000 h)。本研究提供了一种新方法,为高效、经济、可规模化生产二次锌-空气电池电极材料提供了可行方案。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Liu YS, Cheng ZC, Li ZX, Zhao N, **e YL, Du Y, Xuan JN, **ong DB, Zhou JQ, Cai L, Yang YH. CoNi nanoalloy-Co-N4 composite active sites embedded in hierarchical porous carbon as bi-functional catalysts for flexible Zn-air battery. Nano Energy. 2022;99:107325. https://doi.org/10.1016/j.nanoen.2022.107325.

    Article  CAS  Google Scholar 

  2. Chen DF, Pan JM, Pei PC, Song X, Ren P, Zhang L. Cobalt-based oxygen electrocatalysts for zinc-air batteries: recent progress, challenges, and perspectives. Nano Res. 2022;15:5038. https://doi.org/10.1007/s12274-022-4154-4.

    Article  CAS  Google Scholar 

  3. Liu YF, Han K, Peng DN, Kong LY, Su Y, Li HW, Hu HY, Li JY, Wang HR, Fu ZQ, Ma Q, Zhu YF, Tang RR, Chou SL, **ao Y, Wu XW. Layered oxide cathodes for sodium-ion batteries: from air stability, interface chemistry to phase transition. InfoMat. 2023;5(6):e12422. https://doi.org/10.1002/inf2.12422.

    Article  CAS  Google Scholar 

  4. Fan C, Wang X, Wu XR, Chen YS, Wang ZX, Li M, Sun DM, Tang YW, Fu GT. Neodymium-evoked valence electronic modulation to balance reversible oxygen electrocatalysis. Adv Energy Mater. 2023;13(2):2203244. https://doi.org/10.1002/aenm.202203244.

    Article  CAS  Google Scholar 

  5. Su Y, Johannessen B, Zhang SL, Chen ZR, Gu QF, Li GJ, Yan H, Li JY, Hu HY, Zhu YF, Xu SL, Liu HK, Dou SX, **ao Y. Soft-rigid heterostructures with functional cation vacancies for fast-charging and high-capacity sodium storage. Adv Mater. 2023;35(40):2305149. https://doi.org/10.1002/adma.202305149.

    Article  CAS  Google Scholar 

  6. Chen T, Wen CY, Wu C, Qiu L, Wu ZG, Li JY, Zhu YF, Li HY, Kong QQ, Song Y, Wan F, Chen MZ, Saadoune I, Zhong BH, Dou SX, **ao Y, Guo XD. Manipulating the crystal plane angle within the primary particle arrangement for the radial ordered structure in a Ni-rich cathode. Chem Sci. 2023;14:13924. https://doi.org/10.1039/d3sc05461f.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao RP, Chen ZH, Li QH, Wang X, Tang YW, Fu GT, Li H, Lee JM, Huang SM. N-doped LaPO4: an effective Pt-free catalyst for electrocatalytic oxygen reduction. Chem Catal. 2022;2(12):3590. https://doi.org/10.1016/j.checat.2022.11.008.

    Article  CAS  Google Scholar 

  8. Wang X, Zhang J, Wang P, Li LC, Wang HY, Sun DM, Li YF, Tang YW, Lu XF, Wang Y, Fu GT. Terbium-induced cobalt valence-band narrowing boosts electrocatalytic oxygen reduction. Energy Environ Sci. 2023;16:5500. https://doi.org/10.1039/d3ee02503a.

    Article  CAS  Google Scholar 

  9. Du Y, Chen WX, Zhong ZY, Wang SZ, Zhou LN, **ong DB, Liu YS, Liu ZH, Wang K. Bifunctional oxygen electrocatalysts with WN@Ni nanostructures implanted on N-doped carbon nanorods for rechargeable Zn-Air batteries. J Alloys Compd. 2023;960:170789. https://doi.org/10.1016/j.jallcom.2023.170789.

    Article  CAS  Google Scholar 

  10. Li M, Feng LG. NiSe2-CoSe2 with a hybrid nanorods and nanoparticles structure for efficient oxygen evolution reaction. Chin J Struct Chem. 2022;960:170789. https://doi.org/10.14102/j.cnki.0254-5861.2021-0037.

    Article  CAS  Google Scholar 

  11. Chen JJ, Gu S, Hao R, Wang ZY, Li MQ, Li ZQ, Liu K, Liao KM, Wang ZQ, Huang H, Li YZ, Zhang KL, Lu ZG. Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met. 2022;41(6):2055. https://doi.org/10.1007/s12598-022-01974-7.

    Article  CAS  Google Scholar 

  12. Liu YS, Li ZX, Wang SZ, Xuan JN, **ong DB, Zhou LN, Zhou JQ, Wang J, Yang YH, Du Y. Hierarchical porous yolk-shell Co-N-C nanocatalysts encaged ingraphene nanopockets for high-performance Zn-air battery. Nano Res. 2023;16:8893. https://doi.org/10.1007/s12274-023-5593-2.

    Article  CAS  Google Scholar 

  13. Zhu JX, **. Energy Environ Mater. 2021;5(2):655. https://doi.org/10.1002/eem2.12219.

    Article  CAS  Google Scholar 

  14. Xu ZA, Zhu J, Shao JZ, **a Y, Tseng J, Jiao CL, Ren GY, Liu PF, Li GS, Chen RX, Chen SQ, Huang FQ, Wang HL. Atomically dispersed cobalt in core–shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries. Energy Storage Mater. 2022;47:365. https://doi.org/10.1016/j.ensm.2022.02.004.

    Article  Google Scholar 

  15. Lu Q, Zou XH, Bu YF, Shao ZP. Structural design of supported electrocatalysts for rechargeable Zn-air batteries. Energy Storage Mater. 2023;55:166. https://doi.org/10.1016/j.ensm.2022.11.046.

    Article  Google Scholar 

  16. Liu Q, Wang L, Fu HG. Research progress on the construction of synergistic electrocatalytic ORR/OER self-supporting cathodes for zinc-air batteries. J Mater Chem A. 2023;11(9):4400. https://doi.org/10.1039/d2ta09626a.

    Article  CAS  Google Scholar 

  17. Liu HT, Guan JY, Yang SX, Yu YH, Shao R, Zhang ZP, Dou ML, Wang F, Xu Q. Metal-organic-framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst. Adv Mater. 2020;32(36):e2003649. https://doi.org/10.1002/adma.202003649.

    Article  CAS  PubMed  Google Scholar 

  18. Yang HQ, Wang BD, Kou SQ, Lu GL, Liu ZN. Mott–schottky heterojunction of Co/Co2P with built-in electric fields for bifunctional oxygen electrocatalysis and zinc-air battery. Chem Eng J. 2021;425:131589. https://doi.org/10.1016/j.cej.2021.131589.

    Article  CAS  Google Scholar 

  19. Shi SS, Sun CL, Yin XP, Shen LY, Shi QH, Zhao KN, Zhao YF, Zhang JJ. FeP quantum dots confined in carbon-nanotube-grafted P-doped carbon octahedra for high-rate sodium storage and full-cell applications. Adv Funct Mater. 2020;30(10):1909283. https://doi.org/10.1002/adfm.201909283.

    Article  CAS  Google Scholar 

  20. Zhou QX, Sun RX, Ren YP, Tian R, Yang J, Pang H, Huang K, Tian XL, Xu L, Tang YW. Reactive template-derived interfacial engineering of CoP/CoO heterostructured porous nanotubes towards superior electrocatalytic hydrogen evolution. Carbon Energy. 2023;5(1):e273. https://doi.org/10.1002/cey2.273.

    Article  CAS  Google Scholar 

  21. Chen D, Bai HW, Zhu JW, Wu C, Zhao HY, Wu DL, Jiao JX, Ji PX, Mu SC. Multiscale hierarchical structured NiCoP enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems. Adv Energy Mater. 2023;13(22):202300499. https://doi.org/10.1002/aenm.202300499.

    Article  CAS  Google Scholar 

  22. Xu HW, Zhu JW, Wang PY, Chen D, Zhang CT, **ao MJ, Ma QL, Bai HW, Qin R, Ma JJ, Mu SC. Fe-Co-P multi-heterostructure arrays for efficient electrocatalytic water splitting. J Mater Chem A. 2021;9:24677. https://doi.org/10.1039/d1ta06603j.

    Article  CAS  Google Scholar 

  23. Ding XD, Yu J, Huang WQ, Chen DY, Lin W, **e ZL. Modulation of the interfacial charge density on Fe2P-CoP by coupling CeO2 for accelerating alkaline electrocatalytic hydrogen evolution reaction and overall water splitting. Chem Eng J. 2021;9:24677. https://doi.org/10.1016/j.cej.2022.138550.

    Article  CAS  Google Scholar 

  24. Chen LL, Zhang YL, Dong LL, Liu XJ, Long L, Wang SY, Liu CY, Dong SJ, Jia JB. Honeycomb-like 3D N, P-codoped porous carbon anchored with ultrasmall Fe2P nanocrystals for efficient Zn-air battery. Carbon. 2020;158:885. https://doi.org/10.1016/j.carbon.2019.11.073.

    Article  CAS  Google Scholar 

  25. Tang YJ, You LM, Zhou K. Enhanced oxygen evolution reaction activity of a Co2P@NC-Fe2P composite boosted by interfaces between a N-doped carbon matrix and Fe2P microspheres. ACS Appl Mater Interfaces. 2020;12(23):25884. https://doi.org/10.1021/acsami.0c04902.

    Article  CAS  PubMed  Google Scholar 

  26. Lu AL, Zhang XQ, Chen YZ, **e QS, Qi QQ, Ma YT, Peng DL. Synthesis of Co2P/graphene nanocomposites and their enhanced properties as anode materials for lithium ion batteries. J Power Sources. 2015;295:329. https://doi.org/10.1016/j.jpowsour.2015.06.154.

    Article  CAS  Google Scholar 

  27. Hou YH, Liu YP, Gao RQ, Li QJ, Guo HZ, Goswami A, Zboril R, Gawande MB, Zou XX. Ag@CoxP core-shell heterogeneous nanoparticles as efficient oxygen evolution reaction catalysts. ACS Catal. 2017;7(10):7038. https://doi.org/10.1021/acscatal.7b02341.

    Article  CAS  Google Scholar 

  28. Yi YY, Zhao W, Zeng ZH, Wei CH, Lu C, Shao YL, Guo WY, Dou SX, Sun JY. ZIF-8@ZIF-67-derived nitrogen-doped porous carbon confined CoP polyhedron targeting superior potassium-ion storage. Small. 2020;16(7):e1906566. https://doi.org/10.1002/smll.201906566.

    Article  CAS  PubMed  Google Scholar 

  29. Cao Q, Hao S, Wu YW, Pei K, You WB, Che RC. Interfacial charge redistribution in interconnected network of Ni2P-Co2P boosting electrocatalytic hydrogen evolution in both acidic and alkaline conditions. Chem Eng J. 2021;424:130444. https://doi.org/10.1016/j.cej.2021.130444.

    Article  CAS  Google Scholar 

  30. Cai ZX, Xu W, Li FM, Yao QH, Chen X. Electropolymerization fabrication of Co phosphate nanoparticles encapsulated in N, P-codoped mesoporous carbon networks as a 3D integrated electrode for full water splitting. ACS Sustain Chem Eng. 2016;5(1):571. https://doi.org/10.1021/acssuschemeng.6b01952.

    Article  CAS  Google Scholar 

  31. Diao LC, Yang T, Chen B, Zhang B, Zhao NQ, Shi CS, Liu EZ, Ma LY, He CN. Electronic reconfiguration of Co2P induced by Cu do** enhancing oxygen reduction reaction activity in zinc-air batteries. J Mater Chem A. 2019;7(37):21232. https://doi.org/10.1039/c9ta07652b.

    Article  CAS  Google Scholar 

  32. Zhang CT, Pu ZH, Amiinu IS, Zhao YF, Zhu JW, Tang YF, Mu SC. Co2P quantum dot embedded N, P dual-doped carbon self-supported electrodes with flexible and binder-free properties for efficient hydrogen evolution reactions. Nanoscale. 2018;10(6):2902. https://doi.org/10.1039/c7nr08148k.

    Article  CAS  PubMed  Google Scholar 

  33. ** C, Deng HJ, Zhang J, Hao Y, Liu JJ. Jagged carbon nanotubes from polyaniline: strain-driven high-performance for Zn-air battery. Chem Eng J. 2022;434:134617. https://doi.org/10.1016/j.cej.2022.134617.

    Article  CAS  Google Scholar 

  34. Pan XL, Wu S, Wang TT, Histand G, Li YW. Copper containing 3D polyaniline/phytic acid hydrogels for photocatalytic hydrogen production. J Mater Sci. 2022;57(27):12836. https://doi.org/10.1007/s10853-022-07424-0.

    Article  CAS  Google Scholar 

  35. Fang J, Zhao CM, Meng C, Zhang GZ. Preparation and properties of PA@PANI conductive and flame retardant functional polyester fabric without droplet. Mater Today Commun. 2022;30:103031. https://doi.org/10.1016/j.mtcomm.2021.103031.

    Article  CAS  Google Scholar 

  36. Xu F, Ding BC, Qiu YQ, Dong RH, Zhuang WQ, Xu XS, Han HJ, Yang JY, Wei BQ, Wang HQ, Kaskel S. Generalized domino-driven synthesis of hollow hybrid carbon spheres with ultrafine metal nitrides/oxides. Matter. 2020;3(1):246. https://doi.org/10.1016/j.matt.2020.05.012.

    Article  Google Scholar 

  37. Das D, Nanda KK. One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy. 2016;30:303. https://doi.org/10.1016/j.nanoen.2016.10.024.

    Article  CAS  Google Scholar 

  38. Du Y, ** YX, Chen WX, Liu YS, Pan QY, Wang K, Zhou LN, Liu ZH. Designed formation of polyoxometallate-based mesoporous titania composites by a solvent-free chemical self-assembly method for oxidative desulfurization of diesels. Energy Fuels. 2021;36(1):361. https://doi.org/10.1021/acs.energyfuels.1c03644.

    Article  CAS  Google Scholar 

  39. Du Y, Hu JC, ** YX, Liu YS, Pan QY, Wang K, Zhou LN, Liu ZH, Du XD. Polyethyleneimine-assisted synthesis of ionic liquid-derived Mo-based mesoporous TiO2 composite with superior oxidative desulfurization activity. J Environ Chem Eng. 2022;10(2):107143. https://doi.org/10.1016/j.jece.2022.107143.

    Article  CAS  Google Scholar 

  40. Liu ZH, Du Y, Yu RH, Zheng MB, Hu R, Wu JS, **a YY, Zhaung ZC, Wang DS. Tuning mass transport in electrocatalysis down to sub-5nm through nanoscale grade separation. Angew Chem Int Ed. 2023;62(3):e202212653. https://doi.org/10.1002/anie.202212653.

    Article  CAS  Google Scholar 

  41. Zhou LN, Du Y, ** YX, Chen WX, Pan QY, Wang K, Liu YS, Yang L, Liu ZH. Grinding-induced solvent-free synthesis of mesoporous zirconia-supported tungsten oxide composite and its superior oxidative desulfurization performance. Fuel. 2022;315:123181. https://doi.org/10.1016/j.fuel.2022.123181.

    Article  CAS  Google Scholar 

  42. To JW, Chen Z, Yao HB, He JJ, Kim K, Chou HH, Pan LJ, Wilcox J, Cui Y, Bao ZA. Ultrahigh surface area three-dimensional porous graphitic carbon from conjugated polymeric molecular framework. ACS Cent Sci. 2015;1(2):68. https://doi.org/10.1021/acscentsci.5b00149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kong FT, Cui XZ, Huang YF, Yao HL, Chen YF, Tian H, Meng G, Chen C, Chang ZW, Shi JL. N-doped carbon electrocatalyst: marked ORR activity in acidic media without the contribution from metal sites? Angew Chem Int Ed. 2022;61(15):e202116290. https://doi.org/10.1002/anie.202116290.

    Article  CAS  Google Scholar 

  44. Zhou LJ, Zhang CY, Cai XY, Qin Y, Jiang HF, Li BS, Lai LF, Shen ZX, Huang W. N, P co-doped hierarchical porous graphene as a metal-free bifunctional air cathode for Zn-air batteries. ChemElectroChem. 2018;5(14):1811. https://doi.org/10.1002/celc.201701148.

    Article  CAS  Google Scholar 

  45. Wang K, Du Y, Li Y, Wu XY, Hu HY, Wang GH, **ao Y, Chou SL, Zhang GK. Atomic-level insight of sulfidation-engineered Aurivillius-related Bi2O2SiO3 nanosheets enabling visible light low-concentration CO2 conversion. Carbon Energy. 2022;5(2):e264. https://doi.org/10.1002/cey2.264.

    Article  CAS  Google Scholar 

  46. Wang Z, ** XY, Zhu C, Liu YP, Tan H, Ku RQ, Zhang YQ, Zhou LJ, Liu Z, Hwang SJ. Atomically dispersed Co2-N6 and Fe-N4 costructures boost oxygen reduction reaction in both alkaline and acidic media. Adv Mater. 2021;33(49):e2104718. https://doi.org/10.1002/adma.202104718.

    Article  CAS  PubMed  Google Scholar 

  47. Hou S, Zhang AS, Zhou Q, Wen YJ, Zhang SX, Su LF, Huang XJ, Wang T, Rui K, Wang C, Liu HL, Lu ZY, He PL. Designing heterostructured FeP-CoP for oxygen evolution reaction: interface engineering to enhance electrocatalytic performance. Nano Res. 2023;16:6601. https://doi.org/10.1007/s12274-023-5390-y.

    Article  CAS  Google Scholar 

  48. Das D, Das A, Reghunath M, Nanda KK. Phosphine-free avenue to Co2P nanoparticle encapsulated N, P co-doped CNTs: a novel non-enzymatic glucose sensor and an efficient electrocatalyst for oxygen evolution reaction. Green Chem. 2017;19(5):1327. https://doi.org/10.1039/c7gc00084g.

    Article  CAS  Google Scholar 

  49. Cheng M, Fan HS, Xu YY, Wang RM, Zhang XX. Hollow Co2P nanoflowers assembled from nanorods for ultralong cycle-life supercapacitors. Nanoscale. 2017;9(37):14162. https://doi.org/10.1039/c7nr04464j.

    Article  CAS  PubMed  Google Scholar 

  50. Lu XF, Chen Y, Wang SB, Gao SY, Lou XWD. Interfacing manganese oxide and cobalt in porous graphitic carbon polyhedrons boosts oxygen electrocatalysis for Zn-air batteries. Adv Mater. 2019;31(39):e1902339. https://doi.org/10.1002/adma.201902339.

    Article  CAS  PubMed  Google Scholar 

  51. Kuang M, Wang QH, Han P, Zheng GF. Co-embedded N-enriched mesoporous carbon for efficient oxygen reduction and hydrogen evolution reactions. Adv Energy Mater. 2017;7(17):1700193. https://doi.org/10.1002/aenm.201700193.

    Article  CAS  Google Scholar 

  52. Yu MH, Wang ZK, Hou C, Wang ZL, Liang CL, Zhao CY, Tong YX, Lu XH, Yang SH. Nitrogen-doped Co3O4 mesoporous nanowire arrays as an additive-free air-cathode for flexible solid-state zinc-air batteries. Adv Mater. 2017;29(15):1602868. https://doi.org/10.1002/adma.201602868.

    Article  CAS  Google Scholar 

  53. Yang Y, Zeng R, **ong Y, DiSalvo FJ, Abruna HD. Cobalt-based nitride-core oxide-shell oxygen reduction electrocatalysts. J Am Chem Soc. 2019;141(49):19241. https://doi.org/10.1021/jacs.9b10809.

    Article  CAS  PubMed  Google Scholar 

  54. Qiao MF, Wang Y, Wågberg T, Mamat X, Hu X, Zou GA, Hu GZ. Ni-Co bimetallic coordination effect for long lifetime rechargeable Zn-air battery. J Energy Chem. 2020;47:146. https://doi.org/10.1016/j.jechem.2019.12.005.

    Article  Google Scholar 

  55. Shao Q, Li Y, Cui X, Li TJ, Wang HG, Li YH, Duan Q, Si ZJ. Metallophthalocyanine-based polymer-derived Co2P nanoparticles anchoring on doped graphene as high-efficient trifunctional electrocatalyst for Zn-air batteries and water splitting. ACS Sustain Chem Eng. 2020;8(16):6422. https://doi.org/10.1021/acssuschemeng.0c00852.

    Article  CAS  Google Scholar 

  56. Tian YH, Xu L, Li M, Yuan D, Liu XH, Qian JC, Dou YH, Qiu JX, Zhang SQ. Interface engineering of CoS/CoO@N-doped graphene nanocomposite for high-performance rechargeable Zn-Air batteries. Nano-Micro Lett. 2020;13(1):3. https://doi.org/10.1007/s40820-020-00526-x.

    Article  CAS  Google Scholar 

  57. Shi Q, Liu Q, Zheng YP, Dong YQ, Wang L, Liu HT, Yang WY. Controllable construction of bifunctional CoxP@N, P-doped carbon electrocatalysts for rechargeable Zinc-Air batteries. Energy Environ Mater. 2022;5(2):515. https://doi.org/10.1002/eem2.12208.

    Article  CAS  Google Scholar 

  58. Zhang Q, Luo F, Long X, Yu XX, Qu KG, Yang ZH. N, P doped carbon nanotubes confined WN-Ni Mott–Schottky heterogeneous electrocatalyst for water splitting and rechargeable zinc-air batteries. Energy Environ Mater. 2021;298:120511. https://doi.org/10.1002/eem2.12208.

    Article  CAS  Google Scholar 

  59. Chen X, Pu J, Hu XH, Yao YC, Dou YB, Jiang JJ, Zhang WJ. Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-Air battery. Small. 2022;18(16):e2200578. https://doi.org/10.1002/smll.202200578.

    Article  CAS  PubMed  Google Scholar 

  60. He YT, Yang XX, Li YS, Liu LT, Guo SW, Shu CY, Liu F, Liu YN, Tan Q, Wu G. Atomically dispersed Fe-Co dual metal sites as bifunctional oxygen electrocatalysts for rechargeable and flexible Zn-air batteries. ACS Catal. 2022;12(2):1216. https://doi.org/10.1021/acscatal.1c04550.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Hubei Provincial Natural Science Foundation and Huangshi of China (No. 2022CFD039), the National Natural Science Foundation of China (Nos. 22075072, 52202284 and 52301272), the College Students Innovation and Entrepreneurship Training Program of China (Nos. D202305271035223001, D202305271407085899 and D202305272109110950), Zhejiang Provincial Natural Science Foundation (No. LQ23E020002), Wenzhou Key Scientific and Technological Innovation Research Projects (No. ZG2023053), Wenzhou Natural Science Foundation (Nos. ZG2022032, G20220019 and G20220021), the Cooperation between Industry and Education Project of Ministry of Education (No. 220601318235513), the State Key Laboratory of Electrical Insulation and Power Equipment, **’an Jiaotong University (No. EIPE22208) and the Doctoral Innovation Foundation of Wenzhou University (No. 3162023001001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue Du, Yi-Si Liu or Yao **ao.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, WX., Du, Y., Zhou, LN. et al. An universal in-situ phosphating strategy to fabricate high-performance Co2P-based bifunctional oxygen electrocatalyst derived from conjugated polyaniline-phytic acid copolymer. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02770-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02770-1

Keywords

Navigation