Log in

Improvement of electrochemical and electrical properties of LiFePO4 coated with citric acid

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

LiFePO4 was synthesized using hydrothermal method and coated with different amounts of citric acid as carbon source. The samples were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), surface area measurement—Brunauer–Emmett–Teller (BET), discharge capability, cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS). The results show that the quality and thickness of the carbon coating on the surface of LiFePO4 particles are very important. The optimum carbon content (about 30 wt%) can lead to a more uniform carbon distribution. Electrochemical results show that the samples containing 20 wt%, 30 wt%, 40 wt%, and 50 wt% carbon deliver a discharge capacity of 105, 167, 151, and 112 mAh·g−1, respectively, at the rate of 0.1C. The increase of carbon content leads to the decrease of discharge capacity of LiFePO4/C, owing to the fact that excess carbon delays the diffusion of Li+ through the carbon layers during charge/discharge procedure. The LiFePO4/C with low carbon content exhibits poor electrochemical performance because of its low electrical conductivity. Therefore, the amount of carbon must be optimized in order to achieve excellent electrochemical performance of LiFePO4/C for its application in a lithium ion battery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Padhi AK, Nanjundaswamy KS, Goodenough JB. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc. 1997;144(4):1188.

    Article  Google Scholar 

  2. Liu J, Wang J, Yan X, Zhang X, Yang G, Jalbout AF, Wang R. Long-term cyclability of LiFePO4/carbon composite cathode material for lithium-ion battery applications. Electrochim Acta. 2009;54(24):5656.

    Article  Google Scholar 

  3. Yamada A, Chung SC, Hinokuma K. Optimized LiFePO4 for lithium battery cathodes. J Electrochem Soc. 2001;148(3):A224.

    Article  Google Scholar 

  4. Kim J-K, Choi J-W, Chauhan GS, Ahn J-H, Hwang G-C, Choi J-B, Ahn H-J. Enhancement of electrochemical performance of lithium iron phosphate by controlled sol–gel synthesis. Electrochim Acta. 2008;53(28):8258.

    Article  Google Scholar 

  5. Song Q, Ou X, Wang L, Liang G, Wang Z. Effect of pH value on particle morphology and electrochemical properties of LiFePO4 by hydrothermal method. Mater Res Bull. 2011;46(9):1398.

    Article  Google Scholar 

  6. Yang S, Zavalij PY, Whittingham MS. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun. 2001;3(9):505.

    Article  Google Scholar 

  7. Talebi-Esfandarani M, Savadogo O. Enhancement of electrochemical properties of platinum doped LiFePO4/C cathode material synthesized using hydrothermal method. Solid State Ion. 2014;261:81.

    Article  Google Scholar 

  8. Ding Y, Jiang Y, Xu F, Yin J, Ren H, Zhuo Q, Long Z, Zhang P. Preparation of nano-structured LiFePO4/graphene composites by co-precipitation method. Electrochem Commun. 2010;12(1):10.

    Article  Google Scholar 

  9. Deng FXZ, Zou J, Huang J, **ong X, Li X, Sheng H. Design and synthesis of in situ VGCFs improved LiFePO4 composite cathode materials. J New Mater Electrochem Syst. 2011;14(1):27.

    Google Scholar 

  10. Wang XY, Wu BR, Yang K, Yang XK, Wu C, Wang F, Wu F, Chen S, Li GW. Study on LiFePO4 material and the high power battery. J New Mater Electrochem Syst. 2009;12(4):213.

    Google Scholar 

  11. Franger SFLC, Bourbon C, Rouault H. LiFePO4 Synthesis routes for enhanced electrochemical performance. Electrochem Solid State Lett. 2002;5(10):A231.

    Article  Google Scholar 

  12. Son J-T. High electrochemical performances of LiFePO4 cathode material prepared from surface modification by carbon coating using sucrose via sol-gel method. J New Mater Electrochem Syst. 2010;13(4):301.

    Google Scholar 

  13. Kuwahara A, Suzuki S, Miyayama M. Hydrothermal synthesis of LiFePO4 with small particle size and its electrochemical properties. J Electroceram. 2010;24(2):69.

    Article  Google Scholar 

  14. Arumugam D, Kalaignan GP, Manisankar P. Synthesis and electrochemical characterizations of nano-crystalline LiFePO4 and Mg-doped LiFePO4 cathode materials for rechargeable lithium-ion batteries. J Solid State Electrochem. 2009;13(2):301.

    Article  Google Scholar 

  15. Ou XQ, Liang GC, Liang JS, Xu SZ, Zhao X. LiFePO4 doped with magnesium prepared by hydrothermal reaction in glucose solution. Chin Chem Lett. 2008;19(3):345.

    Article  Google Scholar 

  16. Zhang WJ. Comparison of the rate capacities of LiFePO4 cathode materials. J Electrochem Soc. 2010;157(10):A1040.

    Article  Google Scholar 

  17. Devaraju MK, Honma I. Hydrothermal and solvothermal process towards development of LiMPO4 (M = Fe, Mn) nanomaterials for lithium-ion batteries. Adv Energy Mater. 2012;2(3):284.

    Article  Google Scholar 

  18. Wang G, Liu H, Liu J, Qiao S, Lu GM, Munroe P, Ahn H. Mesoporous LiFePO4/C nanocomposite cathode materials for high power lithium ion batteries with superior performance. Adv Mater. 2010;22(44):4944.

    Article  Google Scholar 

  19. Chernova NA, Roppolo M, Dillon AC, Whittingham MS. Layered vanadium and molybdenum oxides: batteries and electrochromics. J Mater Chem. 2009;19(17):2526.

    Article  Google Scholar 

  20. Chen J, Vacchio MJ, Wang S, Chernova N, Zavalij PY, Whittingham MS. The hydrothermal synthesis and characterization of olivines and related compounds for electrochemical applications. Solid State Ion. 2008;178(31–32):1676.

    Article  Google Scholar 

  21. Zaghib K, Mauger A, Gendron F, Julien CM. Surface effects on the physical and electrochemical properties of thin LiFePO4 particles. Chem Mater. 2007;20(2):462.

    Article  Google Scholar 

  22. Yang J, Bai Y, Qing C, Zhang W. Electrochemical performances of Co-doped LiFePO4/C obtained by hydrothermal method. J Alloys Compd. 2011;509(37):9010.

    Article  Google Scholar 

  23. Liang G, Wang L, Ou X, Zhao X, Xu S. Lithium iron phosphate with high-rate capability synthesized through hydrothermal reaction in glucose solution. J Power Sources. 2008;184(2):538.

    Article  Google Scholar 

  24. Wang G, Shen X, Yao J. One-dimensional nanostructures as electrode materials for lithium-ion batteries with improved electrochemical performance. J Power Sources. 2009;189(1):543.

    Article  Google Scholar 

  25. Zhou X, Wang F, Zhu Y, Liu Z. Graphene modified LiFePO4 cathode materials for high power lithium ion batteries. J Mater Chem. 2011;21(10):3353.

    Article  Google Scholar 

  26. Saravanan K, Balaya P, Reddy MV, Chowdari BVR, Vittal JJ. Morphology controlled synthesis of LiFePO4/C nanoplates for Li-ion batteries. Energy Environ Sci. 2010;3(4):457.

    Article  Google Scholar 

  27. Su FY, You C, He YB, Lv W, Cui W, ** F, Li B, Yang QH, Kang F. Flexible and planar graphene conductive additives for lithium-ion batteries. J Mater Chem. 2010;20(43):9644.

    Article  Google Scholar 

  28. Herle PS, Ellis B, Coombs N, Nazar LF. Nano-network electronic conduction in iron and nickel olivine phosphates. Nat Mater. 2004;3:147.

    Article  Google Scholar 

  29. Doeff M, Wilcox J, Yu R, Aumentado A, Marcinek M, Kostecki R. Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Solid State Electrochem. 2008;12(7):995.

    Article  Google Scholar 

  30. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J. Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc. 2005;152(3):A607.

    Article  Google Scholar 

  31. Kang W, Zhao C, Liu R, Xu F, Shen Q. Ethylene glycol-assisted nanocrystallization of LiFePO4 for a rechargeable lithium-ion battery cathode. Cryst Eng Comm. 2012;14(6):2245.

    Article  Google Scholar 

  32. Wang L, Wang H, Liu Z, **ao C, Dong S, Han P, Zhang Z, Zhang X, Bi C, Cui G. A facile method of preparing mixed conducting LiFePO4/graphene composites for lithium-ion batteries. Solid State Ion. 2010;181(37–38):1685.

    Article  Google Scholar 

  33. Levi MD, Salitra G, Markovsky B, Teller H, Aurbach D, Heider U, Heider L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1−x CoO2: simultaneous application of electroanalytical techniques SSCV, PITT, and EIS. J Electrochem Soc. 1999;146(4):1279.

  34. Shenouda AY, Liu HK. Electrochemical behaviour of tin borophosphate negative electrodes for energy storage systems. J Power Sources. 2008;185(2):1386.

    Article  Google Scholar 

  35. Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T. Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources. 2010;195(9):2877.

    Article  Google Scholar 

  36. Jiang Z, Jiang ZJ. Effects of carbon content on the electrochemical performance of LiFePO4/C core/shell nanocomposites fabricated using FePO4/polyaniline as an iron source. J Alloys Compd. 2012;537:308.

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Laboratory of New Materials for Electrochemistry and Energy (LaNoMat), Polytechnique of Montreal, Quebec, Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Talebi-Esfandarani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebi-Esfandarani, M., Savadogo, O. Improvement of electrochemical and electrical properties of LiFePO4 coated with citric acid. Rare Met. 35, 303–308 (2016). https://doi.org/10.1007/s12598-015-0449-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0449-x

Keywords

Navigation