Log in

Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Pristine LiFePO4 (LFP) and carbon-coated LiFePO4 (LFP/C) are synthesized by sol-gel process using citric acid as a carbon precursor. LFP/C is prepared with three different stoichiometric ratios of metal ions and citric acid, namely 1:0.5, 1:1, and 1:2. Prepared LFP and LFP/C powder samples are characterized by X-ray diffractometer, field emission scanning electron microscope, transmission electron microscope, and Raman spectrophotometer. Electrochemical performances of pristine and carbon-coated LFP are investigated by charge-discharge and cyclic voltammetry technique. The results show that LFP/C (1:1) with an optimum thickness of 4.2 nm and higher graphitic carbon coating has the highest discharge capacity of 148.2 mA h g−1 at 0.1 C rate and 113.1 mA h g−1 at a high rate of 5 C among all four samples prepared. The sample LFP/C (1:1) shows 96% capacity retention after 300 cycles at 1 C rate. The decrease in discharge capacity (141.4and 105.9 mA h g−1 at 0.1 and 5 C, respectively) is observed for the sample LFP/C (1:2). Whereas, pristine LFP shows the lowest discharge capacity of 111.1 mA h g−1 at 0.1 C and capacity was decreased very fast and work only up to 147 cycles. Moreover, cyclic voltammetry has also revealed the lowest polarization of 0.19 V for LFP/C (1:1) and the highest 0.4 V for pristine LFP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Tang K, Sun J, Yu X, Li H, Huang X (2009) Electrochemical performance of LiFePO4 thin films with different morphology and crystallinity. Electrochim Acta 54(26):6565–6569. https://doi.org/10.1016/j.electacta.2009.06.030

    Article  CAS  Google Scholar 

  2. Julien CM, Mauger A, Zaghib K, Groult H (2014) Comparative issues of cathode materials for Li-ion batteries. inorganics 2(1):132–154. https://doi.org/10.3390/inorganics2010132

    Article  CAS  Google Scholar 

  3. Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 144(4):1188–1193. https://doi.org/10.1149/1.1837571

    Article  CAS  Google Scholar 

  4. Ellis BL, Lee KT, Nazar LF (2010) Positive electrode materials for Li-ion and Li-batteries. Chem Mater 22(3):691–714. https://doi.org/10.1021/cm902696j

    Article  CAS  Google Scholar 

  5. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367. https://doi.org/10.1038/35104644

    Article  CAS  Google Scholar 

  6. Prosini PP, Lisi M, Zane D, Pasquali M (2002) Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ionics 148(1-2):45–51. https://doi.org/10.1016/S0167-2738(02)00134-0

    Article  CAS  Google Scholar 

  7. Amin R, Balaya P, Maier J (2007) Anisotropy of electronic and ionic transport in LiFePO4 single crystals. Electrochemi Solid-State Lett 10(1):A13–A16. https://doi.org/10.1149/1.2388240

    Article  CAS  Google Scholar 

  8. Delmas C, Maccario M, Croguennec L, Cras FL, Weill F (2008) Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nature Mater 7(8):665–671. https://doi.org/10.1038/nmat2230

    Article  CAS  Google Scholar 

  9. Hsu F, Tsay SY, Hwang BJ (2004) Synthesis and characterization of nano-sized LiFePO4 cathode materials prepared by a citric acid-based sol–gel route. J Mater Chem 14(17):2690–2695. https://doi.org/10.1039/B406774F

    Article  CAS  Google Scholar 

  10. Huang HY, Goodenough JB (2008) High-rate LiFePO4 lithium rechargeable battery promoted by electrochemically active polymers. Chem Mater 20(23):7237–7241. https://doi.org/10.1021/cm8012304

    Article  CAS  Google Scholar 

  11. Dominko R, Bele M, Gaberscek M, Remskar M, Hanzel D, Pejovnik S, Jamnik J (2005) Impact of the carbon coating thickness on the electrochemical performance of LiFePO4/C composites. J Electrochem Soc 152(3):A607–A610. https://doi.org/10.1149/1.1860492

    Article  CAS  Google Scholar 

  12. Chunga SY, Chiang YM (2003) Microscale measurements of the electrical conductivity of doped LiFePO4. Electrochemi. and Solid-State Lett. 6 A278-A281

  13. Herle PS, Ellis B, Coombs N, Nazar LF (2004) Nano-network electronic conduction in iron and nickel olivine phosphates. Nature Mater 3(3):147–152. https://doi.org/10.1038/nmat1063

    Article  CAS  Google Scholar 

  14. Wang P, Zhang G, Li Z, Sheng W, Zhang Y, Gu J, Zheng X, Cao FF (2016) Improved electrochemical performance of LiFePO4@N-doped carbon nanocomposites using polybenzoxazine as nitrogen and carbon sources. ACS Appl Mater Interfaces 8(40):26908–26915. https://doi.org/10.1021/acsami.6b10594

    Article  CAS  Google Scholar 

  15. Wang P, Zhang G, Cheng J, You Y, Li YK, Ding C, Gu JJ, Zheng XS, Zhang CF, Cao FF (2017) Facile synthesis of carbon-coated spinel Li4Ti5O12/rutile-TiO2 composites as an improved anode material in full lithium-ion batteries with LiFePO4@N-doped carbon cathode. ACS Appl Mater Interfaces 9(7):6138–6143. https://doi.org/10.1021/acsami.6b15982

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Xueliang S (2015) Olivine LiFePO4: the remaining challenges for future energy storage. Energy Environ Sci 8(4):1110–1138. https://doi.org/10.1039/C4EE04016C

    Article  CAS  Google Scholar 

  17. Parrish G, (1999) Carburizing: microstructures and properties, ASM International, USA, 1999

  18. Zhang D, Yu X, Wang Y, Cai R, Shao Z, Liao XZ, Ma ZF (2009) Ball milling-assisted synthesis and electrochemical performance of LiFePO4/C for lithium-ion battery adopting citric acid as carbon precursor. J Electrochem Soc 156(10):A802–A808. https://doi.org/10.1149/1.3183880

    Article  CAS  Google Scholar 

  19. Fey GTK, Lu TL, Wu FY, Li WH (2008) Carboxylic acid-assisted solid-state synthesis of LiFePO4/C composites and their electrochemical properties as cathode materials for lithium-ion batteries. J Solid State Electrochemi 12:825–833

    Article  CAS  Google Scholar 

  20. Wong HC, Carey JR, Chen JS (2010) Physical and electrochemical properties of LiFePO4/C composite cathode prepared from aromatic diketone-containing precursors. Int J Electrochem Sci 5:1090–1102

    CAS  Google Scholar 

  21. Park KS, Schougaard SB, Goodenough JB (2007) Conducting-polymer/iron-redox-couple composite cathodes for lithium secondary batteries. Adv Mater 19(6):848–851. https://doi.org/10.1002/adma.200600369

    Article  CAS  Google Scholar 

  22. Toprakci O, Toprakci HAK, Ji L, Xu G, Lin Z, Zhang X (2012) Carbon nanotube-loaded electrospun LiFePO4/carbon composite nanofibers as stable and binder-free cathodes for rechargeable lithium-ion batteries. ACS Appl Mater Interfaces 4(3):1273–1280. https://doi.org/10.1021/am201527r

    Article  CAS  PubMed  Google Scholar 

  23. Dhindsa KS, Mandal BP, Bazzi K, Lin MW, Nazri M, Nazri GA, Naik VM, Garg VK, Oliveira AC, Vaishnava P, Naik R, Zhou ZX (2013) Enhanced electrochemical performance of graphene modified LiFePO4 cathode material for lithium ion batteries. Solid State Ionics 253:94–100. https://doi.org/10.1016/j.ssi.2013.08.030

    Article  CAS  Google Scholar 

  24. Zaghib K, Shim J, Guerfi A, Charest P, Striebel KA (2005) Effect of carbon source as additives in LiFePO4 as positive electrode for lithium-ion batteries. Electrochem Solid-State Lett 8(4):A207–A210. https://doi.org/10.1149/1.1865652

    Article  CAS  Google Scholar 

  25. Zhang SS, Allen JL, Xua K, Jow TR (2005) Optimization of reaction condition for solid-statesynthesis of LiFePO4-C composite cathodes. J Power Sources 147(1–2):234–240. https://doi.org/10.1016/j.jpowsour.2005.01.004

    Article  CAS  Google Scholar 

  26. Wilcox JD, Doeff MM, Marcinek M, Kostecki R (2007) Factors influencing the quality of carbon coatings on LiFePO4. J Electrochemi Soc 154(5):A389–A395. https://doi.org/10.1149/1.2667591

    Article  CAS  Google Scholar 

  27. Doeff MM, Wilcox JD, Yu R (2008) Impact of carbon structure and morphology on the electrochemical performance of LiFePO4/C composites. J Solid State Electrochem 12(7–8):995–1001. https://doi.org/10.1007/s10008-007-0419-9

    Article  CAS  Google Scholar 

  28. Belharouak I, Johnson C, Amine K (2005) Synthesis and electrochemical analysis of vapor-deposited carbon-coated LiFePO4. Electrochemi Communi 7(10):983–988. https://doi.org/10.1016/j.elecom.2005.06.019

    Article  CAS  Google Scholar 

  29. Hwang BJ, Santhanamand R, Liu DG (2001) Characterization of nanoparticles of LiMn2O4 synthesized by citric acid sol-gel method. J Power Sources 97:441–446

    Google Scholar 

  30. Dou J, Kang X, Wumaier T, Hua N, Han Y, Xu G (2012) Oxalic acid-assisted preparation of LiFePO4/C cathode material for lithium-ion batteries. J Solid State Electrochem 16(5):1925–1931. https://doi.org/10.1007/s10008-011-1585-3

    Article  CAS  Google Scholar 

  31. Chung SY, Bloking JT, Chiang YM (2002) Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater 1(2):123–128. https://doi.org/10.1038/nmat732

    Article  CAS  PubMed  Google Scholar 

  32. Wang LN, Zhan XC, Zhang ZG, Zhang KL (2008) A soft chemistry synthesis routine for LiFePO4-C using a novel carbon source. J Alloys Compds 456(1–2):461–465. https://doi.org/10.1016/j.jallcom.2007.02.103

    Article  CAS  Google Scholar 

  33. Wang D, Cao L, Huang J, Wu J (2013) Effects of different chelating agents on the composition, morphology and electrochemical properties of LiV3O8 crystallites synthesized via sol–gel method. Ceram Int 39(4):3759–3764. https://doi.org/10.1016/j.ceramint.2012.10.214

    Article  CAS  Google Scholar 

  34. Mi CH, Zhao XB, Cao GS, JP T (2005) In situ synthesis and properties of carbon-coated LiFePO4 as Li-ion battery cathodes. J Electrochem Soc 152(3):A483–A487. https://doi.org/10.1149/1.1852438

    Article  CAS  Google Scholar 

  35. Prosini PP, Zane D, Pasquali M (2001) Improved electrochemical performance of a LiFePO4-based composite cathode. Electrochim Acta 46(23):3517–3523. https://doi.org/10.1016/S0013-4686(01)00631-4

    Article  CAS  Google Scholar 

  36. Huang H, Yin SC, Nazar LF (2001) Approaching theoretical capacity of LiFePO4 at room temperature at high rates. Electrochemi Solid-State Lett 4(10):A170–A172. https://doi.org/10.1149/1.1396695

    Article  CAS  Google Scholar 

  37. Chang YC, Peng CT, Hung IH (2014) Effects of particle size and carbon coating on electrochemical properties of LiFePO4/C prepared by hydrothermal method. J Mater Sci 49(20):6907–6916. https://doi.org/10.1007/s10853-014-8395-9

    Article  CAS  Google Scholar 

  38. Cho YD, Fey GTK, Kao HM (2009) The effect of carbon coating thickness on the capacity of LiFePO4/C composite cathodes. J Power Sources 189(1):256–262. https://doi.org/10.1016/j.jpowsour.2008.09.053

    Article  CAS  Google Scholar 

  39. Doeff MM, Hu Y, McLarnon F, Kostecki R (2003) Effect of surface carbon structure on the electrochemical performance of LiFePO4. Electrochemi Solid State Lett 6(10):A207–A209. https://doi.org/10.1149/1.1601372

    Article  CAS  Google Scholar 

  40. Schwan J, Ulrich S, Bathori V, Erhardt H, Silva SRP (1996) Raman spectroscopy on amorphous carbon films. J Applied Physics 80: 440–447, 1, DOI: https://doi.org/10.1063/1.362745

  41. Julien CM, Zaghib K, Mauger A, Massot M, Ait-Salah A, Selmane M, Gendron F (2006) Characterization of the carbon coating onto LiFePO4 particles used in lithium batteries. J Appl Phys 100: 063511–063517, 6, DOI: https://doi.org/10.1063/1.2337556

  42. Michel A, Goodenough JB, Padhi AK, Nanjundaswamy KS, Masquelier C (2003) Cathode materials for secondary (rechargeable) lithium batteries. US Pat 6514640

  43. Okada S, Sawa S, Egashira M, Yamaki J, Tabuchi M, Kageyama H, Konishi T, Yoshino A (2001) Cathode properties of phoshpho-olivine LiMPO4 for lithium secondary battery. J Power Sources 97–98:430–432

    Article  Google Scholar 

  44. Gao F, Tang Z (2008) Kinetic behavior of LiFePO4/C cathode material for lithium-ion batteries. Electrochim Acta 53(15):5071–5075. https://doi.org/10.1016/j.electacta.2007.10.069

    Article  CAS  Google Scholar 

  45. Liu H, Li C, Zhang HP, Fu LJ, Wu YP, Wu HQJ (2006) Kinetic study on LiFePO4/C nano composites synthesized by solid state technique. J Power Sources 159(1):717–720. https://doi.org/10.1016/j.jpowsour.2005.10.098

    Article  CAS  Google Scholar 

  46. Shin HC, Cho WI, Jang H (2006) Electrochemical properties of the carbon-coated LiFePO4 as a cathode material for lithium-ion secondary batteries. J Power Sources 159(2):1383–1388. https://doi.org/10.1016/j.jpowsour.2005.12.043

    Article  CAS  Google Scholar 

  47. YB X, YJ L, Yan L, Yang ZY, Yang RD (2006) Synthesis and effect of forming Fe2P phase on the physics and electrochemical properties of LiFePO4/C materials. J Power Sources 160:570–576

    Article  CAS  Google Scholar 

  48. Liu HW, Tang DG (2008) The low cost synthesis of nanoparticles LiFePO4/C composite for lithium rechargeable batteries. Solid State Ionics 179(33-34):1897–1901. https://doi.org/10.1016/j.ssi.2008.05.005

    Article  CAS  Google Scholar 

  49. Shin HC, Chob WI, Jang H (2006) Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimi Acta 52(4):1472–1476. https://doi.org/10.1016/j.electacta.2006.01.078

    Article  CAS  Google Scholar 

  50. Fey GTK, Chena YG, Kaob HM (2009) Electrochemical properties of LiFePO4 prepared via ball-milling. J Power Sources 189(1):169–178. https://doi.org/10.1016/j.jpowsour.2008.10.016

    Article  CAS  Google Scholar 

  51. Lu CZ, Fey GTK, Kao HM (2009) Study of LiFePO4 cathode materials coated with high surface area carbon. J Power Sources 189:155–162

    Article  CAS  Google Scholar 

  52. Zhao B, Jiang Y, Zhang H, Tao H, Zhong M, Jiao Z (2009) Morphology and electrical properties of carbon coated LiFePO4 cathode materials. J Power Sources 189(1):462–466. https://doi.org/10.1016/j.jpowsour.2008.12.069

    Article  CAS  Google Scholar 

  53. Xu Z, Xu L, Lai Q, Ji X (2007) Microemulsion synthesis of LiFePO4/C and its electrochemical properties as cathode materials for lithium-ion cells. Mater Chemistry Physics 105:80–85

    Article  CAS  Google Scholar 

  54. Wang L, Liang GC, XQ O, Zhi XK, Zhang JP, Cui JY (2009) Effect of synthesis temperature on the properties of LiFePO4/C composites prepared by carbothermal reduction. J Power Sources 189(1):423–428. https://doi.org/10.1016/j.jpowsour.2008.07.032

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Council of Scientific and Industrial Research (CSIR), Government of India (Grant No. 03/1318/14/EMR-II) for its financial support. The authors would also like to acknowledge Dr. Soumya Shankar Ghosh (Postdoctoral Fellow in our department) for his technical support and suitable discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjan Sil.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, H., Sil, A. Effect of carbon coating on electrochemical performance of LiFePO4 cathode material for Li-ion battery. Ionics 24, 2543–2553 (2018). https://doi.org/10.1007/s11581-017-2423-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2423-0

Keywords

Navigation