Log in

Viscosity and Structure Studies of Iron-Based Quaternary Melts: The Effect of S

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study systematically explores the foundational principles and mechanisms governing viscosity across the entirety of Fe-4.5wt%C-0.1wt%Ti-xS melts. The element sulfur (S) imparts discernible effects on system viscosity at diverse temperature intervals. In the solid-liquid phase boundary, an increase in S content precipitates a more pronounced formation of solid-phase particles within the system, consequently resulting in an elevated viscosity during this phase as S content increases. Conversely, within the pure liquid phase, S functions as an interstitial atom, inducing the breakdown of transient atomic clusters. This process induces a notable reduction in the cluster size of the original system and a simultaneous increase in free volume. As a corollary, in the pure liquid phase, system viscosity undergoes a reduction with an escalating S content. However, the influence of further increments in S content on the system’s clusters and free volume gradually diminishes. Therefore, within the pure liquid phase domain, a continued increase in S content progressively mitigates its impact on viscosity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Zhao, H. Zuo, Y. Wang, J. Wang, Q. Xue, Review of green and low-carbon ironmaking technology. Ironmak. Steelmak. 47, 296–306 (2020)

    Article  CAS  Google Scholar 

  2. M. Geerdes, R. Chaigneau, O. Lingiardi, R. Molenaar, R. van Opbergen, Y. Sha, J. Warren, Modern Blast Furnace Ironmaking: An Introduction, 4th edn. (IOS Press, Amsterdam, 2020)

  3. X. Liu, L. Chen, H. Feng, X. Qin, F. Sun, Constructal design of a blast furnace iron-making process based on multi-objective optimization. Energy. 109, 137–151 (2016)

    Article  CAS  Google Scholar 

  4. D. Zhou, S. Cheng, Y. Wang, X. Jiang, The production of large blast furnaces during 2016 and future development of ironmaking in China. Ironmak. Steelmak. 44, 714–720 (2017)

    Article  CAS  Google Scholar 

  5. D.M. Sadek, Effect of cooling technique of blast furnace slag on the thermal behavior of solid cement bricks - ScienceDirect. J. Clean. Prod. 79, 134–141 (2014)

    Article  Google Scholar 

  6. M. Sugiura, Y. Otani, M. Nakashima, N. Omoto, Continuous temperature measurement of liquid iron and slag tapped from a blast furnace. SICE J. Control Meas. Syst. Integr. 7, 147–151 (2014)

    Article  Google Scholar 

  7. S.T. Cham, R. Sakurovs, H. Sun, V. Sahajwalla, Influence of temperature on carbon dissolution of cokes in molten iron. ISIJ Int. 46, 652–659 (2006)

    Article  CAS  Google Scholar 

  8. X. Fan, S. Gao, J. Zhang, K. Jiao, Analysis of the structure and viscosity of iron melts containing titanium at various concentration. J. Mol. Liq. 386, 122519 (2023)

    Article  CAS  Google Scholar 

  9. D. Vinoo, D. Mazumdar, S. Gupta, Optimisation and prediction model of hot metal desulphurisation reagent consumption. Ironmak. Steelmak. 34, 471–476 (2007)

    Article  CAS  Google Scholar 

  10. J. Cui, J. Li, B. Lu, B. Li, Control and production of the sulphur content in smelting process of electrical steel. Metal World (2016) 36–39

  11. N. Shohoji, Statistical thermodynamics of sulphur solution in molten iron. Trans. Iron. Steel. Inst. Japan. 26, 547–550 (1986)

  12. J. Lee, K. Morita, Effect of carbon and sulphur on the surface tension of molten iron. Steel Res. 73, 367–372 (2002)

    Article  CAS  Google Scholar 

  13. Y. Deng, J. Zhang, K. Jiao, Viscosity measurement and prediction model of molten iron. Ironmak. Steelmak. 45, 773–777 (2018)

    Article  CAS  Google Scholar 

  14. C. Wu, V. Sahajwalla, Dissolution rates of coals and graphite in Fe-CS melts in direct ironmaking: influence of melt carbon and sulfur on carbon dissolution. Metall. Mater. Trans. B 31, 243–251 (2000)

    Article  Google Scholar 

  15. M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, R.J. Nightingale, The effect of sulfur concentration in liquid iron on mineral layer formation during coke dissolution. Metall. Mater. Trans. B 42, 642–651 (2011)

    Article  CAS  Google Scholar 

  16. M. Hayer, S. Whiteway, Effect of sulphur on the rate of decarburization of molten iron. Can. Metall. Q. 12, 23–34 (1973)

    Article  Google Scholar 

  17. C.W. Bale, E. Bélisle, P. Chartrand, S. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, A. Pelton, FactSage thermochemical software and databases—recent developments. Calphad. 33, 295–311 (2009)

    Article  CAS  Google Scholar 

  18. A. Kostov, B. Friedrich, D. Živković, Thermodynamic calculations in alloys ti-al, ti-fe, al-fe and ti-al-fe. J. Min. Metall. Sect. B 44, 49–61 (2008)

    Article  CAS  Google Scholar 

  19. O. Awe, Y. Odusote, L. Hussain, O. Akinlade, Temperature dependence of thermodynamic properties of Si–Ti binary liquid alloys. Thermochim. Acta 519, 1–5 (2011)

    Article  CAS  Google Scholar 

  20. W. Wang, J. Chen, J. Yu, L. Zhou, S. Dai, W. Tian, Adjusting the melting and crystallization behaviors of ferronickel slag via partially replacing of SiO2 by B2O3 for mineral wool production. Waste Manage. 111, 34–40 (2020)

    Article  CAS  Google Scholar 

  21. I. Sohn, R. Dippenaar, In-situ observation of crystallization and growth in high-temperature melts using the confocal laser microscope. Metall. Mater. Trans. B 47, 2083–2094 (2016)

    Article  CAS  Google Scholar 

  22. Y. Sato, K. Sugisawa, D. Aoki, T. Yamamura, Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts. Meas. Sci. Technol. 16, 363 (2005)

    Article  CAS  Google Scholar 

  23. S. Gao, K. Jiao, J. Zhang, X. Fan, Y. Zong, Association of atomic clusters and free volume with the viscosity of Fe-C melts. Chem. Phys. Lett. 806, 139983 (2022)

    Article  CAS  Google Scholar 

  24. D.J. Hepburn, G.J. Ackland, Metallic-covalent interatomic potential for carbon in iron. Phys. Rev. B 78, 165115 (2008)

    Article  Google Scholar 

  25. H.-K. Kim, W.-S. Jung, B.-J. Lee, Modified embedded-atom method interatomic potentials for the Fe–Ti–C and Fe–Ti–N ternary systems. Acta Mater. 57, 3140–3147 (2009)

    Article  CAS  Google Scholar 

  26. N. Inui, S. Iwasaki, Interaction energy between graphene and a silicon substrate using pairwise summation of the Lennard-Jones potential. E-J. Surf. Sci. Nanotechnol. 15, 40–49 (2017)

    Article  CAS  Google Scholar 

  27. G. Hudson, J. McCoubrey, Intermolecular forces between unlike molecules. A more complete form of the combining rules. Trans. Faraday Soc. 56, 761–766 (1960)

    Article  CAS  Google Scholar 

  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 17, 1–19 (1995)

    Article  Google Scholar 

  29. S. Nosé, A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984)

    Article  Google Scholar 

  30. V. Filippova, E. Blinova, N. Shurygina, Constructing the pair interaction potentials of iron atoms with other metals. Inorg. Mater. Appl. Res. 6, 402–406 (2015)

    Article  Google Scholar 

  31. S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)

    Article  CAS  Google Scholar 

  32. H. Onodera, T. Abe, T. Yokokawa, Modeling of α/α2 phase equilibrium in the Ti Al system by the cluster variation method. Acta Metall. Mater. 42, 887–892 (1994)

    Article  CAS  Google Scholar 

  33. M.C. Ribeiro, Molecular dynamics simulation of liquid sulfur dioxide. J. Phys. Chem. B 110, 8789–8797 (2006)

    Article  CAS  Google Scholar 

  34. K. Parashivamurthy, P. Sampathkumaran, S. Seetharamu, In-situ TiC precipitation in molten Fe‐C and their characterisation. Cryst. Res. Technol.: J. Exp. Ind. Crystallogr. 43, 674–678 (2008)

    Article  CAS  Google Scholar 

  35. S. Susman, K. Volin, D. Price, M. Grimsditch, J. Rino, R. Kalia, P. Vashishta, G. Gwanmesia, Y. Wang, R. Liebermann, Intermediate-range order in permanently densified vitreous SiO2: a neutron-diffraction and molecular-dynamics study. Phys. Rev. B 43, 1194 (1991)

    Article  CAS  Google Scholar 

  36. S. Trady, M. Mazroui, A. Hasnaoui, K. Saadouni, Molecular dynamics study of atomic-level structure in monatomic metallic glass. J. Non-cryst. Solids. 443, 136–142 (2016)

    Article  CAS  Google Scholar 

  37. Y. Shibazaki, Y. Kono, Effect of silicon, carbon, and sulfur on structure of liquid iron and implications for structure-property relations in liquid iron‐light element alloys. J. Geophys. Res.: Solid Earth 123, 4697–4706 (2018)

    Article  CAS  Google Scholar 

  38. X.H. Wang, Iron and Steel Metallurgy: Steelmaking (Metallurgical Industry Press, Bei**g, 2007)

  39. A.R. Yavari, A. Le Moulec, A. Inoue, N. Nishiyama, N. Lupu, E. Matsubara, W.J. Botta, G. Vaughan, M. Di Michiel, Å. Kvick, Excess free volume in metallic glasses measured by X-ray diffraction. Acta Mater. 53, 1611–1619 (2005)

    Article  CAS  Google Scholar 

  40. V.S. Tsepelev, Y.N. Starodubtsev, Y.A. Kochetkova, Relationship between kinematic viscosity and cluster size in multicomponent metal melts. Defect. Diffus. Forum. 410, 102–107 (2021)

  41. M. Wang, M. Li, J. Cheng, F. He, Z. Liu, Y. Hu, Free volume and structure of Gd2O3 and Y2O3 co-doped silicate glasses. J. Non-cryst. Solids 379, 145–149 (2013)

    Article  CAS  Google Scholar 

  42. V.S. Tsepelev, Y.N. Starodubtsev, Y.A. Kochetkova, Anomalous temperature dependences of Kinematic Viscosity in a Multicomponent Metal melts. Key Eng. Mater. 902, 3–8 (2021)

    Article  Google Scholar 

  43. G. Feng, K. Jiao, J. Zhang, S. Gao, High-temperature viscosity of iron–carbon melts based on liquid structure: the effect of carbon content and temperature. J. Mol. Liq. 330, 115603 (2021)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Independent subject of State Key Laboratory of New Technology in Iron and Steel Metallurgy (41623026), The Youth Science and Technology Innovation Fund by Jianlong Group and University of Science and Technology Bei**g (2023–1221).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Huang, Y., Han, J. et al. Viscosity and Structure Studies of Iron-Based Quaternary Melts: The Effect of S. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-023-01608-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-023-01608-2

Keywords

Navigation