Log in

Viscosity and Structure Studies of Iron-Based Quaternary Melts: The Effect of Silicon

  • Original Research Article
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

This paper investigates the influence mechanism of temperature and Si content on the full viscosity range of Fe-4.5wt pct C-0.1wt pct Ti-xSi melt. In the solid-liquid phase region, the increase in Si content promotes the rise in the liquid phase temperature of the melt and the precipitation of solid-phase particles. The decrease in temperature also enhances the precipitation of solid-phase particles. In the pure liquid phase, the introduction of Si occupies vacancies in the melt and combines with Fe to form more B-Fe clusters. This process results in an increase in the average cluster size in the melt, a decrease in temperature, a reduction in the proportion of free volume, and ultimately, an increase in system viscosity. The viscosity of the system increases with higher Si content and lower temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Geerdes, R. Chaigneau, and O. Lingiardi: Modern Blast Furnace Ironmaking: An Introduction, Ios Press, Amsterdam, 2020.

    Google Scholar 

  2. S.T. Cham, R. Sakurovs, H. Sun, and V. Sahajwalla: ISIJ Int., 2006, vol. 46(5), pp. 652–59.

    CAS  Google Scholar 

  3. M. Sugiura, Y. Otani, M. Nakashima, and N. Omoto: SICE J. Control Meas. Syst. Integr., 2014, vol. 7, pp. 147–51.

    Google Scholar 

  4. O. Adedipe, R.O. Medupin, K.O. Yoro, E.T. Dauda, V.S. Aigbodion, N.A. Agbo, O.W.A. Oyeladun, J.B. Mokwa, S.A. Lawal, and O. Eterigho-Ikelegbe: Sustain. Mater. Technol., 2023, vol. 38, p. e00723.

    CAS  Google Scholar 

  5. R. Colás and G.E. Totten: Encyclopedia of Iron, Steel, and Their Alloys, CRC Press, Boca Raton, 2016.

    Google Scholar 

  6. D. Zhou, S. Cheng, Y. Wang, and **. Jiang: Ironmak. Steelmak., 2017, vol. 44, pp. 714–20.

    CAS  Google Scholar 

  7. D.M. Sadek: J. Clean. Prod., 2014, vol. 79, pp. 134–41.

    Google Scholar 

  8. K.-X. Jiao, J.-L. Zhang, Z.-J. Liu, Xu. Meng, and F. Liu: Int. J. Miner. Metall. Mater., 2015, vol. 22, pp. 1017–24.

    CAS  Google Scholar 

  9. K. Jiao, J. Zhang, Z. Liu, S. Kuang, and Y. Liu: ISIJ Int., 2017, vol. 57, pp. 48–54.

    CAS  Google Scholar 

  10. A. Shinotake, H. Nakamura, N. Yadoumaru, Y. Morizane, and M. Meguro: ISIJ Int., 2003, vol. 43, pp. 321–30.

    CAS  Google Scholar 

  11. J. Li, C. Hua, Y. Yang, and X. Guan: IEEE Trans. Syst. Man Cybernetics Syst., 2020, vol. 52, pp. 1087–99.

    Google Scholar 

  12. Y. Han, Z.Q. Cui, L.J. Wang, J. Li, A.M. Yang, and Y.Z. Zhang: J. Iron Steel Res. Int., 2023, vol. 30, pp. 897–914.

    CAS  Google Scholar 

  13. Z. Cui, A. Yang, L. Wang, and Y. Han: Metals, 2022, vol. 12, p. 1403.

    CAS  Google Scholar 

  14. P. Zhou, H. Song, H. Wang, and T. Chai: IEEE Trans. Control Syst. Technol., 2016, vol. 25, pp. 1761–74.

    Google Scholar 

  15. J. **e and P. Zhou: Neurocomputing, 2020, vol. 387, pp. 139–49.

    Google Scholar 

  16. J.-L. Zhang, M.-F. Wei, H.-W. Guo, R. Mao, Z.-W. Hu, and Y.-B. Zhao: Chin. J. Eng., 2013, vol. 35, pp. 994–99.

    CAS  Google Scholar 

  17. Y. Deng, J. Zhang, and K. Jiao: Ironmak. Steelmak., 2018, vol. 45, pp. 773–77.

    CAS  Google Scholar 

  18. S. Wang, Y. Guo, T. Jiang, F. Chen, F. Zheng, and L. Yang: JOM, 2019, vol. 71, pp. 329–35.

    CAS  Google Scholar 

  19. Y.Y. He, Q.C. Liu, J. Yang, B.N. Yang, M.H. Long, H.M. Zheng, C.W. Liu, and M. Wei: Adv. Mater. Res., 2011, vol. 146, pp. 1911–16.

    Google Scholar 

  20. C.W. Bale, E. Bélisle, P. Chartrand, S.A. Decterov, G. Eriksson, K. Hack, I.-H. Jung, Y.-B. Kang, J. Melançon, and A.D. Pelton: Calphad, 2009, vol. 33, pp. 295–311.

    CAS  Google Scholar 

  21. A. Kostov, B. Friedrich, and D. Živković: J. Min. Metall. Sect. B, 2008, vol. 44, pp. 49–61.

    CAS  Google Scholar 

  22. O.E. Awe, Y.A. Odusote, L.A. Hussain, and O. Akinlade: Thermochim. Acta, 2011, vol. 519, pp. 1–5.

    CAS  Google Scholar 

  23. W. Wang, J. Chen, Yu. Jie, L. Zhou, S. Dai, and W. Tian: Waste Manag., 2020, vol. 111, pp. 34–40.

    CAS  PubMed  Google Scholar 

  24. Il. Sohn and R. Dippenaar: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 2083–94.

    Google Scholar 

  25. Y. Sato, K. Sugisawa, D. Aoki, and T. Yamamura: Meas. Sci. Technol., 2005, vol. 16, p. 363.

    CAS  Google Scholar 

  26. S. Gao, K. Jiao, J. Zhang, X. Fan, and Y. Zong: Chem. Phys. Lett., 2022, vol. 806, p. 139983.

    CAS  Google Scholar 

  27. X. Fan, S. Gao, J. Zhang, and K. Jiao: J. Mol. Liq., 2023, vol. 386, p. 122519.

    CAS  Google Scholar 

  28. D.J. Hepburn and G.J. Ackland: Phys. Rev. B, 2008, vol. 78, p. 165115.

    Google Scholar 

  29. H.-K. Kim, W.-S. Jung, and B.-J. Lee: Acta Mater., 2009, vol. 57, pp. 3140–47.

    CAS  Google Scholar 

  30. N. Inui and S. Iwasaki: J. Surf. Sci. Nanotechnol., 2017, vol. 15, pp. 40–49.

    CAS  Google Scholar 

  31. G.H. Hudson and J.C. McCoubrey: Trans. Faraday Soc., 1960, vol. 56, pp. 761–66.

    CAS  Google Scholar 

  32. V.P. Filippova, E.N. Blinova, and N.A. Shurygina: Inorg. Mater. Appl. Res., 2015, vol. 6, pp. 402–06.

    Google Scholar 

  33. S.J. Stuart, A.B. Tutein, and J.A. Harrison: J. Chem. Phys., 2000, vol. 112, pp. 6472–86.

    CAS  Google Scholar 

  34. H. Onodera, T. Abe, and T. Yokokawa: Acta Metall. Mater., 1994, vol. 42, pp. 887–92.

    CAS  Google Scholar 

  35. S. Plimpton: J. Comput. Phys., 1995, vol. 17, pp. 1–19.

    Google Scholar 

  36. S. Nosé: J. Chem. Phys., 1984, vol. 81, pp. 511–19.

    Google Scholar 

  37. T. Noda, Y. Sumiyoshi, and N. Ito: Carbon, 1968, vol. 6, pp. 813–16.

    CAS  Google Scholar 

  38. K. Theuwissen, J. Lacaze, and L. Laffont: Carbon, 2016, vol. 96, pp. 1120–28.

    CAS  Google Scholar 

  39. D.D. Saratovkin: Dendritic Crystallization, Consultants Bureau, New York, 1959.

    Google Scholar 

  40. D.M. Stefanescu, G. Alonso, P. Larranaga, E. De la Fuente, and R. Suarez: Acta Mater., 2016, vol. 107, pp. 102–26.

    CAS  Google Scholar 

  41. S. Susman, K.J. Volin, D.L. Price, M. Grimsditch, J.P. Rino, R.K. Kalia, P. Vashishta, G. Gwanmesia, Y. Wang, and R.C. Liebermann: Phys. Rev. B, 1991, vol. 43, p. 1194.

    CAS  Google Scholar 

  42. S. Trady, M. Mazroui, A. Hasnaoui, and K. Saadouni: J. Non-Cryst. Solids, 2016, vol. 443, pp. 136–42.

    CAS  Google Scholar 

  43. O.S. Roik, O.S. Muratov, O.M. Yakovenko, V.P. Kazimirov, N.V. Golovataya, and V.E. Sokolskii: J. Mol. Liq., 2014, vol. 197, pp. 215–22.

    CAS  Google Scholar 

  44. S. Zhang, C. Xue, X. Wang, and W. Gao: Physica B, 2018, vol. 545, pp. 433–37.

    CAS  Google Scholar 

  45. D. Bouchard and C.W. Bale: Can. Metall. Q., 1995, vol. 34(4), pp. 343–46.

    Google Scholar 

  46. Y. Shibazaki and Y. Kono: J. Geophys. Res. Solid Earth, 2018, vol. 123, pp. 4697–4706.

    CAS  Google Scholar 

  47. Yoshifumi Kita, Masafumi ZEZE, and Zen-ichiro MORITA: Transactions of the Iron and Steel Institute of Japan 1982, vol. 22, pp. 571-76.

  48. S.-J. Cheng, X.-F. Bian, J.-X. Zhang, X.-B. Qin, and Z.-H. Wang: Mater. Lett., 2003, vol. 57, pp. 4191–95.

    CAS  Google Scholar 

  49. L. Zhang, Wu. Weikang, H. Ren, J. Dong, Y. Liu, and H. Li: RSC Adv., 2015, vol. 5, pp. 49175–81.

    CAS  Google Scholar 

  50. F.C. Yin, M.X. Zhao, Y.X. Liu, H.A. Wei, and L.I. Zhi: Trans. Nonferrous Met. Soc. China, 2013, vol. 23(2), pp. 556–61.

    CAS  Google Scholar 

  51. B. Dong, S. Zhou, J. Qin, Y. Li, H. Chen, and Y. Wang: Prog. Nat. Sci. Mater. Int., 2018, vol. 28, pp. 696–703.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Independent subject of State Key Laboratory of New Technology in Iron and Steel Metallurgy (41623026), The Youth Science and Technology Innovation Fund by Jianlong Group and University of Science and Technology Bei**g (2023-1221).

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianliang Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Gao, S. & Zhang, J. Viscosity and Structure Studies of Iron-Based Quaternary Melts: The Effect of Silicon. Metall Mater Trans B 55, 1553–1563 (2024). https://doi.org/10.1007/s11663-024-03048-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-024-03048-8

Navigation