Log in

Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights

  • Original Research article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Extensive research over the years has revealed the remarkable potential of gold nanoparticles (AuNPs) for detecting biomarkers in osteoarthritis (OA). AuNPs are a promising class of nanomaterials offering a wide range of diagnostic and clinical applications. It provides an effective and robust framework for qualitative and quantitative analysis of biomarkers present in the biological fluids of OA patients. AuNPs as theranostics have gained significant attention due to their discrete physical and optical characteristics, including localized surface plasmon resonance (LSPR), fluorescence, surface-enhanced Raman scattering, and quantized charging effect. These unique properties provide AuNPs as an excellent scaffold for ligand multiplexing, allowing accrued sensitivity for biomarker detection. Several reports have delved into the LSPR properties of the kinetics of biological interactions between the ligand and analyte. Tuneable radiative properties of AuNPs coupled with surface engineering allow facile detection of biomarkers in biological fluids. Herein, we have presented a comprehensive summary of distinct biomarkers generated from different molecular pathological processes in OA. An armamentarium of diagnostic methodologies such as aptamer conjugation, antibody coupling, ligand anchoring, and peptide decoration on the surface of AuNPs facilitates the identification and quantification of biomarkers. Additionally, a diverse range of sensing strategies for biomarker spotting, along with current challenges and future perspectives, have also been well delineated in the present manuscript.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Quicke JG, Conaghan PG, Corp N, Peat G (2022) Osteoarthritis year in review 2021: epidemiology & therapy. Osteoarthr Cartil 30:196–206. https://doi.org/10.1016/j.joca.2021.10.003

    Article  CAS  Google Scholar 

  2. Duan WL, Zhang LN, Bohara R et al (2023) Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 10:4. https://doi.org/10.1186/s40779-022-00439-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Boffa A, Merli G, Andriolo L et al (2021) Synovial fluid biomarkers in knee osteoarthritis: a systematic review and quantitative evaluation using BIPEDs criteria. Cartilage 13:82S-103S. https://doi.org/10.1177/1947603520942941

    Article  PubMed  Google Scholar 

  4. Lv Z, Cai X, Bian Y et al (2023) Advances in mesenchymal stem cell therapy for osteoarthritis: from preclinical and clinical perspectives. Bioengineering 10:195. https://doi.org/10.3390/bioengineering10020195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allen KD, Thoma LM, Golightly YM (2022) Epidemiology of osteoarthritis. Osteoarthr Cartil 30:194–195. https://doi.org/10.1016/j.joca.2021.04.020

    Article  Google Scholar 

  6. Braun HJ, Gold GE (2012) Diagnosis of osteoarthritis: imaging. Bone 51:278–288. https://doi.org/10.1016/j.bone.2011.11.019

    Article  PubMed  Google Scholar 

  7. Braaten JA, Banovetz MT, DePhillipo NN et al (2022) Biomarkers for osteoarthritis diseases. Life 12:1799. https://doi.org/10.3390/life12111799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mourya A, Shubhra BN et al (2022) Potential of phytomolecules in sync with nanotechnology to surmount the limitations of current treatment options in the management of osteoarthritis. Mini Rev Med Chem 23:992–1032. https://doi.org/10.2174/1389557522666220511140527

    Article  CAS  Google Scholar 

  9. Pitou M, Papi RM, Tzavellas AN, Choli-Papadopoulou T (2023) ssDNA-modified gold nanoparticles as a tool to detect miRNA biomarkers in osteoarthritis. ACS Omega 8:7529–7535. https://doi.org/10.1021/acsomega.2c04806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Strimbu K, Tavel JA (2010) What are biomarkers? Curr Opin HIV AIDS 5:463–466. https://doi.org/10.1097/COH.0b013e32833ed177

    Article  PubMed  PubMed Central  Google Scholar 

  11. Nagy EE, Nagy-Finna C, Popoviciu H, Kovács B (2020) Soluble biomarkers of osteoporosis and osteoarthritis, from pathway map** to clinical trials: an update. Clin Interv Aging 15:501–518. https://doi.org/10.2147/CIA.S242288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kraus VB, Burnett B, Coindreau J et al (2011) Application of biomarkers in the development of drugs intended for the treatment of osteoarthritis. Osteoarthr Cartil 19:515–542. https://doi.org/10.1016/j.joca.2010.08.019

    Article  CAS  Google Scholar 

  13. Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115:11147–11190. https://doi.org/10.1021/acs.chemrev.5b00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mihranyan A, Ferraz N, Strømme M (2012) Current status and future prospects of nanotechnology in cosmetics. Prog Mater Sci 57:875–910. https://doi.org/10.1016/j.pmatsci.2011.10.001

    Article  CAS  Google Scholar 

  15. Roduner E (2006) Size matters: Why nanomaterials are different. Chem Soc Rev 35:583–592. https://doi.org/10.1039/b502142c

    Article  CAS  PubMed  Google Scholar 

  16. Lee Ventola C (2012) The nanomedicine revolution: Part 1: emerging concepts. P and T 37:512–517

    PubMed  PubMed Central  Google Scholar 

  17. Seigneuric R, Markey L, Nuyten D SA et al (2010) From nanotechnology to nanomedicine: applications to cancer research. Curr Mol Med 10:540–652. https://doi.org/10.2174/156652410792630634

    Article  Google Scholar 

  18. Banerjee K, Das S, Choudhury P et al (2017) A novel approach of synthesizing and evaluating the anticancer potential of silver oxide nanoparticles in vitro. Chemotherapy 62:279–289. https://doi.org/10.1159/000453446

    Article  CAS  PubMed  Google Scholar 

  19. Vasam M, Punagoti RA, Mourya R (2021) Biomedical Applications of gold nanoparticles. Nanotechnology in the life sciences. Springer, Cham. https://doi.org/10.1007/978-3-030-84262-8_2

    Chapter  Google Scholar 

  20. Maccora D, Dini V, Battocchio C et al (2019) Gold nanoparticles and nanorods in nuclear medicine: a mini review. Appl Sci (Switzerland) 9:3232. https://doi.org/10.3390/app9163232

    Article  CAS  Google Scholar 

  21. Joo J (2021) Diagnostic and therapeutic nanomedicine. Adv Exp Med Biol 1310:401–447. https://doi.org/10.1007/978-981-33-6064-8_15

    Article  CAS  PubMed  Google Scholar 

  22. Hu X, Zhang Y, Ding T et al (2020) Multifunctional gold nanoparticles: a novel nanomaterial for various medical applications and biological activities. Front Bioeng Biotechnol 8:990. https://doi.org/10.3389/fbioe.2020.00990

    Article  PubMed  PubMed Central  Google Scholar 

  23. Inose T, Kitamura N, Takano-Kasuya M et al (2021) Development of X-ray contrast agents using single nanometer-sized gold nanoparticles and lactoferrin complex and their application in vascular imaging. Colloids Surf B Biointerfaces 203:111732. https://doi.org/10.1016/j.colsurfb.2021.111732

    Article  CAS  PubMed  Google Scholar 

  24. Yin F, Fan Y, Xu L et al (2021) Macrophages loaded with dendrimer-entrapped gold nanoparticles as a theranostic platform for CT imaging-guided combinational therapy of orthotopic osteosarcoma. Chem Eng J 417:129273. https://doi.org/10.1016/j.cej.2021.129273

    Article  CAS  Google Scholar 

  25. Pramanik A, Gao Y, Patibandla S et al (2021) The rapid diagnosis and effective inhibition of coronavirus using spike antibody attached gold nanoparticles. Nanoscale Adv 3:1588–1596. https://doi.org/10.1039/d0na01007c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong SY, Park YM, Jang YH et al (2012) Quantitative lateral-flow immunoassay for the assessment of the cartilage oligomeric matrix protein as a marker of osteoarthritis. Biochip J 6:213–220. https://doi.org/10.1007/s13206-012-6303-4

    Article  CAS  Google Scholar 

  27. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. https://doi.org/10.1002/art.34453

    Article  PubMed  PubMed Central  Google Scholar 

  28. Geiger BC, Wang S, Padera RF et al (2018) Cartilage-penetrating nanocarriers improve delivery and efficacy of growth factor treatment of osteoarthritis. Sci Transl Med 10:eaat8800. https://doi.org/10.1126/scitranslmed.aat8800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mora JC, Przkora R, Cruz-Almeida Y (2018) Knee osteoarthritis: pathophysiology and current treatment modalities. J Pain Res 11:2189–2196. https://doi.org/10.2147/JPR.S154002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ayhan E, Kesmezacar H, Akgun I (2014) Intraarticular injections (corticosteroid, hyaluronic acid, platelet rich plasma) for the knee osteoarthritis. World J Orthop 5:351–361. https://doi.org/10.5312/wjo.v5.i3.351

    Article  PubMed  PubMed Central  Google Scholar 

  31. Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592. https://doi.org/10.1038/nrrheum.2016.136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jiang Y, Tuan RS (2015) Origin and function of cartilage stem/progenitor cells in osteoarthritis. Nat Rev Rheumatol 11:206–215. https://doi.org/10.1038/nrrheum.2014.200

    Article  PubMed  Google Scholar 

  33. Adães S, Ferreira-Gomes J, Mendonça M et al (2015) Injury of primary afferent neurons may contribute to osteoarthritis induced pain: an experimental study using the collagenase model in rats. Osteoarthr Cartil 23:914–924. https://doi.org/10.1016/j.joca.2015.02.010

    Article  Google Scholar 

  34. Houard X, Goldring MB, Berenbaum F (2013) Homeostatic mechanisms in articular cartilage and role of inflammation in osteoarthritis. Curr Rheumatol Rep 15:375. https://doi.org/10.1007/s11926-013-0375-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mueller MB, Tuan RS (2011) Anabolic/Catabolic balance in pathogenesis of osteoarthritis: identifying molecular targets. PM R 3:S3-11. https://doi.org/10.1016/j.pmrj.2011.05.009

    Article  PubMed  Google Scholar 

  36. Wojdasiewicz P, Poniatowski ŁA (2014) Szukiewicz D (2014) The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm 2014:561459. https://doi.org/10.1155/2014/561459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Loeser RF (2006) Molecular mechanisms of cartilage destruction: Mechanics, inflammatory mediators, and aging collide. Arthritis Rheum 54:1357–1360. https://doi.org/10.1002/2Fart.21813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Slovacek H, Khanna R, Poredos P et al (2021) Interrelationship of MMP-9, Proteoglycan-4, and inflammation in osteoarthritis patients undergoing total hip arthroplasty. Clin Appl Thromb Hemost. https://doi.org/10.1177/1076029621995569

    Article  PubMed  PubMed Central  Google Scholar 

  39. Little CB, Barai A, Burkhardt D et al (2009) Matrix metalloproteinase 13-deficient mice are resistant to osteoarthritic cartilage erosion but not chondrocyte hypertrophy or osteophyte development. Arthritis Rheum 60:3723–3733. https://doi.org/10.1002/art.25002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Clockaerts S, Bastiaansen-Jenniskens YM, Runhaar J et al (2010) The infrapatellar fat pad should be considered as an active osteoarthritic joint tissue: a narrative review. Osteoarthr Cartil 18:876–882. https://doi.org/10.1016/j.joca.2010.03.014

    Article  CAS  Google Scholar 

  41. Mitchell PG, Magna HA, Reeves LM et al (1996) Cloning, expression, and type II collagenolytic activity of matrix metalloproteinase-13 from human osteoarthritic cartilage. J Clin Invest 97:761–768. https://doi.org/10.1172/JCI118475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Johnson AR, Pavlovsky AG, Ortwine DF et al (2007) Discovery and characterization of a novel inhibitor of matrix metalloprotease-13 that reduces cartilage damage in vivo without joint fibroplasia side effects. J Biol Chem 282:27781–27791. https://doi.org/10.1074/jbc.M703286200

    Article  CAS  PubMed  Google Scholar 

  43. Howes JM, Bihan D, Slatter DA et al (2014) The recognition of collagen and triple-helical toolkit peptides by MMP-13: sequence specificity for binding and cleavage. J Biol Chem 289:24091–24101. https://doi.org/10.1074/jbc.M114.583443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hayes AJ, Melrose J (2020) Aggrecan, the primary weight-bearing cartilage proteoglycan, has context-dependent, cell-directive properties in embryonic development and neurogenesis: aggrecan glycan side chain modifications convey interactive biodiversity. Biomolecules 10:1244. https://doi.org/10.3390/biom10091244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Arner EC (2002) Aggrecanase-mediated cartilage degradation. Curr Opin Pharmacol 2:322–329. https://doi.org/10.1016/s1471-4892(02)00148-0

    Article  CAS  PubMed  Google Scholar 

  46. Maly K, Sastre EA, Farrell E et al (2021) Comp and tsp-4: functional roles in articular cartilage and relevance in osteoarthritis. Int J Mol Sci 22:2242. https://doi.org/10.3390/ijms22052242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Séguin CA, Bernier SM (2003) TNFα suppresses link protein and type II collagen expression in chondrocytes: role of MEK1/2 and NF-κB signaling pathways. J Cell Physiol 197:356–369. https://doi.org/10.1002/jcp.10371

    Article  CAS  PubMed  Google Scholar 

  48. Ulivi V, Lenti M, Gentili C et al (2011) Anti-inflammatory activity of monogalactosyldiacylglycerol in human articular cartilage in vitro: activation of an anti-inflammatory cyclooxygenase-2 (COX-2) pathway. Arthritis Res Ther 13:R92. https://doi.org/10.1186/ar3367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Lefebvre V, Peeters-Joris C, Vaes G (1990) Modulation by interleukin 1 and tumor necrosis factor α of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. BBA - Mol Cell Res 1052:366–378. https://doi.org/10.1016/0167-4889(90)90145-4

    Article  CAS  Google Scholar 

  50. El Mansouri FE, Chabane N, Zayed N et al (2011) Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum 63:168–179. https://doi.org/10.1002/art.27762

    Article  CAS  PubMed  Google Scholar 

  51. Choi MC, Jo J, Park J et al (2019) NF-κb signaling pathways in osteoarthritic cartilage destruction. Cells 8:734. https://doi.org/10.3390/cells8070734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Murata M, Yudoh K, Masuko K (2008) The potential role of vascular endothelial growth factor (VEGF) in cartilage. How the angiogenic factor could be involved in the pathogenesis of osteoarthritis? Osteoarthr Cartil 16:279–286. https://doi.org/10.1016/j.joca.2007.09.003

    Article  CAS  Google Scholar 

  53. Boyce BF, **u Y, Li J et al (2015) NF-κB-mediated regulation of osteoclastogenesis. Endocrinol Metab 30:35–44. https://doi.org/10.3803/EnM.2015.30.1.35

    Article  CAS  Google Scholar 

  54. Duan L, Liang Y, Xu X et al (2020) Noncoding RNAs in subchondral bone osteoclast function and their therapeutic potential for osteoarthritis. Arthritis Res Ther 22:279. https://doi.org/10.1186/s13075-020-02374-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zeng N, Yan ZP, Chen XY, Ni GX (2020) Infrapatellar fat pad and knee osteoarthritis. Aging Dis 11:1317–1328. https://doi.org/10.14336/ad.2019.1116

    Article  PubMed  PubMed Central  Google Scholar 

  56. Mohammadinejad R, Ashrafizadeh M, Pardakhty A et al (2020) Nanotechnological strategies for osteoarthritis diagnosis, monitoring, clinical management, and regenerative medicine: recent advances and future opportunities. Curr Rheumatol Rep 22:12. https://doi.org/10.1007/s11926-020-0884-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi M (2007) Pyridinoline, a collagen crosslink, as a biochemical marker for arthritis. Curr Rheumatol Rev 3:252–260. https://doi.org/10.2174/157339707782409017

    Article  CAS  Google Scholar 

  58. Remst DFG, Blaney Davidson EN, Vitters EL et al (2013) Osteoarthritis-related fibrosis is associated with both elevated pyridinoline cross-link formation and lysyl hydroxylase 2b expression. Osteoarthr Cartil 21:157–164. https://doi.org/10.1016/j.joca.2012.10.002

    Article  CAS  Google Scholar 

  59. Arunrukthavon P, Heebthamai D, Benchasiriluck P et al (2020) Can urinary CTX-II be a biomarker for knee osteoarthritis? Arthroplasty 2:6. https://doi.org/10.1186/S42836-020-0024-2

    Article  PubMed  PubMed Central  Google Scholar 

  60. Wang S, Su S, Yu C et al (2021) Immunodetection of urinary C-terminal telopeptide fragment of type II collagen: an osteoarthritis biomarker analysis. Biotechnol Appl Biochem 68:726–731. https://doi.org/10.1002/BAB.1981

    Article  CAS  PubMed  Google Scholar 

  61. Kraus VB, Karsdal MA (2021) Osteoarthritis: current molecular biomarkers and the way forward. Calcif Tissue Int 109(3):329–338. https://doi.org/10.1007/S00223-020-00701-7

    Article  CAS  PubMed  Google Scholar 

  62. Luo Y, He Y, Reker D et al (2018) A novel high sensitivity type II collagen blood-based biomarker, PRO-C2, for assessment of cartilage formation. Int J Mol Sci 19:3485. https://doi.org/10.3390/IJMS19113485

    Article  PubMed  PubMed Central  Google Scholar 

  63. Lian W, Liu H, Sun LY et al (2018) Serum levels of PIICP, PIIANP, and PIIBNP are decreased in patients with an endemic osteochondropathy. Kashin-Beck disease J Orthop Surg Res 13:128. https://doi.org/10.1186/S13018-018-0840-Z

    Article  PubMed  Google Scholar 

  64. Daghestani HN, Jordan JM, Renner JB et al (2017) Serum N-propeptide of collagen IIA (PIIANP) as a marker of radiographic osteoarthritis burden. PLoS ONE 12(12):e0190251. https://doi.org/10.1371/JOURNAL.PONE.0190251

    Article  PubMed  PubMed Central  Google Scholar 

  65. Hick AC, Malaise M, Loeuille D et al (2021) Cartilage biomarkers Coll2–1 and Coll2–1NO2 are associated with knee OA MRI features and are helpful in identifying patients at risk of disease worsening. Cartilage 13:1637S-1647S. https://doi.org/10.1177/19476035211021892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Mobasheri A, Lambert C, Henrotin Y (2019) Coll2-1 and Coll2-1NO2 as exemplars of collagen extracellular matrix turnover - biomarkers to facilitate the treatment of osteoarthritis? Expert Rev Mol Diagn 19:803–812. https://doi.org/10.1080/14737159.2019.1646641

    Article  CAS  PubMed  Google Scholar 

  67. Groen SS, Sinkeviciute D, Bay-Jensen AC et al (2021) A serological type II collagen neoepitope biomarker reflects cartilage breakdown in patients with osteoarthritis. Osteoarthr Cartil Open 3:100207. https://doi.org/10.1016/j.ocarto.2021.100207

    Article  PubMed  PubMed Central  Google Scholar 

  68. Fosang AJ, Rogerson FM (2010) Identifying the human aggrecanase. Osteoarthr Cartil 18:1109–1116. https://doi.org/10.1016/j.joca.2010.06.014

    Article  CAS  Google Scholar 

  69. Hedbom E, Antonsson P, Hjerpe A et al (1992) Cartilage matrix proteins: an acidic oligomeric protein (COMP) detected only in cartilage. J Biol Chem 267:6132–6136. https://doi.org/10.1016/s0021-9258(18)42671-3

    Article  CAS  PubMed  Google Scholar 

  70. Mörgelin M, Heinegård D, Engel J, Paulsson M (1992) Electron microscopy of native cartilage oligomeric matrix protein purified from the swarm rat chondrosarcoma reveals a five-armed structure. J Biol Chem 267:6137–6141. https://doi.org/10.1016/s0021-9258(18)42672-5

    Article  PubMed  Google Scholar 

  71. DiCesare PE, Mörgelin M, Carlson CS et al (1995) Cartilage oligomeric matrix protein: isolation and characterization from human articular cartilage. J Orthop Res 13:422–428. https://doi.org/10.1002/jor.1100130316

    Article  CAS  PubMed  Google Scholar 

  72. Vilím V, Vytášek R, Olejárová M et al (2001) Serum cartilage oligomeric matrix protein reflects the presence of clinically diagnosed synovitis in patients with knee osteoarthritis. Osteoarthr Cartil 9:612–618. https://doi.org/10.1053/joca.2001.0434

    Article  Google Scholar 

  73. Vaculík J, Braun M, Dungl P et al (2016) Serum and bone pentosidine in patients with low impact hip fractures and in patients with advanced osteoarthritis. BMC Musculoskelet Disord 17:308. https://doi.org/10.1186/S12891-016-1168-7

    Article  PubMed  PubMed Central  Google Scholar 

  74. Zakaria SS, Gaballah HH, El Saadany HM (2016) Micro RNA-146a expression, NF-κB/P65 activity and serum pentosidine levels as potential biomarkers for disease severity in primary knee osteoarthritis patients. Egypt Rheumatol 38:319–325. https://doi.org/10.1016/j.ejr.2016.02.001

    Article  Google Scholar 

  75. Vos PAJM, Welsing PMJ, deGroot J et al (2013) Skin pentosidine in very early hip/knee osteoarthritis (CHECK) is not a strong independent predictor of radiographic progression over 5 years follow-up. Osteoarthr Cartil 21:823–830. https://doi.org/10.1016/j.joca.2013.03.006

    Article  CAS  Google Scholar 

  76. Glasson SS, Askew R, Sheppard B et al (2005) Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 434:644–648. https://doi.org/10.1038/nature03369

    Article  CAS  PubMed  Google Scholar 

  77. Song RH, Tortorella MD, Malfait AM et al (2007) Aggrecan degradation in human articular cartilage explants is mediated by both ADAMTS-4 and ADAMTS-5. Arthritis Rheum 56:575–585. https://doi.org/10.1002/art.22334

    Article  CAS  PubMed  Google Scholar 

  78. Leonardi R, Crimi S, Almeida LE et al (2015) ADAMTS-4 and ADAMTS-5 expression in human temporomandibular joint discs with internal derangement, correlates with degeneration. J Oral Pathol Med 44:870–875. https://doi.org/10.1111/jop.12295

    Article  CAS  PubMed  Google Scholar 

  79. Huhtala M, Heino J, Casciari D et al (2005) Integrin evolution: insights from ascidian and teleost fish genomes. Matrix Biol 24:83–95. https://doi.org/10.1016/j.matbio.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  80. Knäuper V, López-Otin C, Smith B et al (1996) Biochemical characterization of human collagenase-3. J Biol Chem 271:1544–1550. https://doi.org/10.1074/jbc.271.3.1544

    Article  PubMed  Google Scholar 

  81. Knäuper V, Cowell S, Smith B et al (1997) The role of the C-terminal domain of human collagenase-3 (MMP-13) in the activation of procollagenase-3, substrate specificity, and tissue inhibitor of metalloproteinase interaction. J Biol Chem 272:7608–7616. https://doi.org/10.1074/jbc.272.12.7608

    Article  PubMed  Google Scholar 

  82. Kamekura S, Hoshi K, Shimoaka T et al (2005) Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthr Cartil 13:632–641. https://doi.org/10.1016/j.joca.2005.03.004

    Article  CAS  Google Scholar 

  83. Nugent M (2016) MicroRNAs: exploring new horizons in osteoarthritis. Osteoarthr Cartil 24:573–580. https://doi.org/10.1016/j.joca.2015.10.018

    Article  CAS  Google Scholar 

  84. Yamamoto K, Okano H, Miyagawa W et al (2016) MMP-13 is constitutively produced in human chondrocytes and co-endocytosed with ADAMTS-5 and TIMP-3 by the endocytic receptor LRP1. Matrix Biol 56:57–73. https://doi.org/10.1016/j.matbio.2016.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Li X, Fu X, Gao Y et al (2018) Expression of tissue inhibitor of metalloproteinases-1 and b-cell lymphoma-2 in the synovial membrane in patients with knee osteoarthritis. Exp Ther Med 15:885–889. https://doi.org/10.3892/ETM.2017.5462

    Article  CAS  PubMed  Google Scholar 

  86. Badshah Y, Shabbir M, Hayat H et al (2021) Genetic markers of osteoarthritis: early diagnosis in susceptible Pakistani population. J Orthop Surg Res 16:124. https://doi.org/10.1186/S13018-021-02230-X

    Article  PubMed  PubMed Central  Google Scholar 

  87. Plsikova Matejova J, Spakova T, Harvanova D et al (2020) A preliminary study of combined detection of COMP, TIMP-1, and MMP-3 in synovial fluid: potential indicators of osteoarthritis progression. Cartilage 13:1421S-1430S. https://doi.org/10.1177/1947603520946385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Munjal A, Bapat S, Hubbard D et al (2019) Advances in molecular biomarker for early diagnosis of osteoarthritis. Biomol Concepts 10:111–119. https://doi.org/10.1515/BMC-2019-0014

    Article  CAS  PubMed  Google Scholar 

  89. Singh S, Kumar D, Sharma NR (2014) Role of hyaluronic acid in early diagnosis of knee osteoarthritis. J Clin Diagn Res 8:LC04–LC07. https://doi.org/10.7860/JCDR/2014/11732.5342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pilichou A, Papassotiriou I, Michalakakou K et al (2008) High levels of synovial fluid osteoprotegerin (OPG) and increased serum ratio of receptor activator of nuclear factor-κB ligand (RANKL) to OPG correlate with disease severity in patients with primary knee osteoarthritis. Clin Biochem 41:746–749. https://doi.org/10.1016/J.CLINBIOCHEM.2008.02.011

    Article  CAS  PubMed  Google Scholar 

  91. Lolli A, Colella F, De Bari C, van Osch GJVM (2019) Targeting anti-chondrogenic factors for the stimulation of chondrogenesis: a new paradigm in cartilage repair. J Orthop Res 37:12–22. https://doi.org/10.1002/jor.24136

    Article  PubMed  Google Scholar 

  92. Hong E, Hari Reddi A (2012) MicroRNAs in chondrogenesis, articular cartilage, and osteoarthritis: implications for tissue engineering. Tissue Eng Part B Rev 18:445–453. https://doi.org/10.1089/ten.teb.2012.0116

    Article  CAS  PubMed  Google Scholar 

  93. Lian WS, Ko JY, Wu RW et al (2018) MicroRNA-128a represses chondrocyte autophagy and exacerbates knee osteoarthritis by disrupting Atg12. Cell Death Dis 9:919. https://doi.org/10.1038/s41419-018-0994-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. **aoqiang E, Cao Y, Meng H et al (2012) Dendritic cells of synovium in experimental model of osteoarthritis of rabbits. Cell Physiol Biochem 30:23–32. https://doi.org/10.1159/000339046

    Article  CAS  Google Scholar 

  95. Stöve J, Huch K, Günther KP, Scharf HP (2000) Interleukin-1beta induces different gene expression of stromelysin, aggrecan and tumor-necrosis-factor-stimulated gene 6 in human osteoarthritic chondrocytes in vitro. Pathobiology 68:144–149. https://doi.org/10.1159/000055915

    Article  PubMed  Google Scholar 

  96. Hammacher A, Ward LD, Simpson RJ et al (1994) Structure-Function analysis of human IL-6: identification of two distinct regions that are important for receptor binding. Protein Sci 3:2280–2293. https://doi.org/10.1002/pro.5560031213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chadjichristos C, Ghayor C, Kypriotou M et al (2003) Sp1 and Sp3 transcription factors mediate interleukin-1β down-regulation of human type II collagen gene expression in articular chondrocytes. J Biol Chem 278:39762–39772. https://doi.org/10.1074/jbc.M303541200

    Article  CAS  PubMed  Google Scholar 

  98. Ridker PM (2007) C-Reactive protein and the prediction of cardiovascular events among those at intermediate risk. Moving an inflammatory hypothesis toward consensus. J Am Coll Cardiol 49:2129–2138. https://doi.org/10.1016/j.jacc.2007.02.052

    Article  CAS  PubMed  Google Scholar 

  99. Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Invest 111:1805–1812. https://doi.org/10.1172/jci18921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Du Clos TW, Mold C (2011) Pentraxins (CRP, SAP) in the process of complement activation and clearance of apoptotic bodies through Fcγ receptors. Curr Opin Organ Transplant 16:15–20. https://doi.org/10.1097/MOT.0b013e32834253c7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Du Clos TW (2000) Function of C-reactive protein. Ann Med 32:274–278. https://doi.org/10.3109/07853890009011772

    Article  PubMed  Google Scholar 

  102. Liles WC, Van Voorhis WC (1995) Review: nomenclature and biologic significance of cytokines involved in inflammation and the host immune response. J Infect Dis 172:1573–1580. https://doi.org/10.1093/infdis/172.6.1573

    Article  CAS  PubMed  Google Scholar 

  103. Commins SP, Borish L, Steinke JW (2010) Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol 125:S53-72. https://doi.org/10.1016/j.jaci.2009.07.008

    Article  PubMed  Google Scholar 

  104. Seruga B, Zhang H, Bernstein LJ, Tannock IF (2008) Cytokines and their relationship to the symptoms and outcome of cancer. Nat Rev Cancer 8:887–899. https://doi.org/10.1038/nrc2507

    Article  CAS  PubMed  Google Scholar 

  105. Kang EH, Lee YJ, Kim TK et al (2010) Adiponectin is a potential catabolic mediator in osteoarthritis cartilage. Arthritis Res Ther 12:R231. https://doi.org/10.1186/ar3218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hui W, Litherland GJ, Elias MS et al (2012) Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis 71:455–462. https://doi.org/10.1136/annrheumdis-2011-200372

    Article  CAS  PubMed  Google Scholar 

  107. Al-Suhaimi EA, Shehzad A (2013) Leptin, resistin and visfatin: The missing link between endocrine metabolic disorders and immunity. Eur J Med Res 18:12. https://doi.org/10.1186/2047-783x-18-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Toussirot E, Streit G, Wendling D (2007) The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem 14:1095–1100. https://doi.org/10.2174/092986707780362826

    Article  CAS  PubMed  Google Scholar 

  109. Hu PF, Chen WP, Tang JL et al (2010) Apelin plays a catabolic role on articular cartilage: in vivo and in vitro studies. Int J Mol Med 26:357–363. https://doi.org/10.3892/ijmm-00000473

    Article  CAS  PubMed  Google Scholar 

  110. Perruccio AV, Mahomed NN, Chandran V, Gandhi R (2014) Plasma adipokine levels and their association with overall burden of painful joints among individuals with hip and knee osteoarthritis. J Rheumatol 41:334–337. https://doi.org/10.3899/jrheum.130709

    Article  CAS  PubMed  Google Scholar 

  111. Kumari Y, Kaur G, Kumar R et al (2019) Gold nanoparticles: new routes across old boundaries. Adv Colloid Interface Sci 274:102037. https://doi.org/10.1016/j.cis.2019.102037

    Article  CAS  PubMed  Google Scholar 

  112. Ovais M, Raza A, Naz S et al (2017) Current state and prospects of the phytosynthesized colloidal gold nanoparticles and their applications in cancer theranostics. Appl Microbiol Biotechnol 101:3551–3565. https://doi.org/10.1007/s00253-017-8250-4

    Article  CAS  PubMed  Google Scholar 

  113. Herizchi R, Abbasi E, Milani M, Akbarzadeh A (2016) Current methods for synthesis of gold nanoparticles. Artif Cells Nanomed Biotechnol 44:596–602. https://doi.org/10.3109/21691401.2014.971807

    Article  CAS  PubMed  Google Scholar 

  114. Dong J, Carpinone PL, Pyrgiotakis G et al (2020) Synthesis of precision gold nanoparticles using Turkevich method. KONA 37:224–232. https://doi.org/10.14356/kona.2020011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Amina SJ, Guo B (2020) A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int J Nanomed 15:9823–9857. https://doi.org/10.2147/ijn.s279094

    Article  CAS  Google Scholar 

  116. Jana NR, Gearheart L, Murphy CJ (2001) Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv Mater 13:1389–1393. https://doi.org/10.1002/1521-4095(200109)13:18%3c1389::AID-ADMA1389%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  117. Choi J, Park S, Stojanović Z et al (2013) Facile solvothermal preparation of monodisperse gold nanoparticles and their engineered assembly of ferritin-gold nanoclusters. Langmuir 29:15698–15703. https://doi.org/10.1021/la403888f

    Article  CAS  PubMed  Google Scholar 

  118. Chang CC, Wu HL, Kuo CH, Huang MH (2008) Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem Mater 20:7570–7574. https://doi.org/10.1021/cm8021984

    Article  CAS  Google Scholar 

  119. Rane AV, Kanny K, Abitha VK, Thomas S (2018) Methods for synthesis of nanoparticles and fabrication of nanocomposites. Synth Inorg Nanomater Adv Key Technol. https://doi.org/10.1016/B978-0-08-101975-7.00005-1

    Article  Google Scholar 

  120. Haider AFMY, Sengupta S, Abedin KM, Talukder AI (2011) Fabrication of gold nanoparticles in water by laser ablation technique and their characterization. Appl Phys A Mater Sci Process 105:487–495. https://doi.org/10.1007/s00339-011-6542-6

    Article  CAS  Google Scholar 

  121. Liu B, Louis M, ** L et al (2018) Co-Template directed synthesis of gold nanoparticles in mesoporous titanium dioxide. Chem Eur J 24:9651–9657. https://doi.org/10.1002/chem.201801223

    Article  CAS  PubMed  Google Scholar 

  122. Pedireddy S, Lee HK, Tjiu WW et al (2014) One-step synthesis of zero-dimensional hollow nanoporous gold nanoparticles with enhanced methanol electrooxidation performance. Nat Commun 5:4947. https://doi.org/10.1038/ncomms5947

    Article  CAS  PubMed  Google Scholar 

  123. Manna S, Kim JW, Takahashi Y et al (2016) Synthesis of single-crystalline anisotropic gold nano-crystals via chemical vapor deposition. J Appl Phys 119:174301. https://doi.org/10.1063/1.4948565

    Article  CAS  Google Scholar 

  124. Shuang S, Zhang Z (2018) The effect of annealing treatment and atom layer deposition to Au/Pt nanoparticles-decorated TiO2 nanorods as photocatalysts. Molecules 23:525. https://doi.org/10.3390/molecules23030525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Amendola V, Polizzi S, Meneghetti M (2006) Laser ablation synthesis of gold nanoparticles in organic solvents. J Phys Chem B 110:7232–7237. https://doi.org/10.1021/jp0605092

    Article  CAS  PubMed  Google Scholar 

  126. Elsupikhe RF, Ahmad MB, Shameli K et al (2016) Photochemical reduction as a green method for the synthesis and size control of silver nanoparticles in κ-carrageenan. IEEE Trans Nanotechnol 15:209–213. https://doi.org/10.1109/TNANO.2015.2513201

    Article  CAS  Google Scholar 

  127. Alnafisah AS, Alqrairy E, Tar H et al (2022) Light-assisted synthesis of silver and gold nanoparticles by new benzophenone derivatives. ACS Omega 8:3207–3220. https://doi.org/10.1021/acsomega.2c06655

    Article  CAS  Google Scholar 

  128. Marin ML, McGilvray KL, Scaiano JC (2008) Photochemical strategies for the synthesis of gold nanoparticles from Au(III) and Au(I) using photoinduced free radical generation. J Am Chem Soc 130:16572–16584. https://doi.org/10.1021/ja803490n

    Article  CAS  PubMed  Google Scholar 

  129. Do JL, Friščić T (2017) Mechanochemistry: a force of synthesis. ACS Cent Sci 3:13–19. https://doi.org/10.1021/acscentsci.6b00277

    Article  CAS  PubMed  Google Scholar 

  130. Crespo J, Guari Y, Ibarra A et al (2014) Ultrasmall NHC-coated gold nanoparticles obtained through solvent free thermolysis of organometallic Au(i) complexes. Dalton Trans 43:15713–15718. https://doi.org/10.1039/c4dt02160f

    Article  CAS  PubMed  Google Scholar 

  131. Ward CJ, Tronndorf R, Eustes AS et al (2014) Seed-mediated growth of gold nanorods: limits of length to diameter ratio control. J Nanomater. https://doi.org/10.1155/2014/765618

    Article  Google Scholar 

  132. He Y, Savagatrup S, Zarzar LD, Swager TM (2017) Interfacial polymerization on dynamic complex colloids: creating stabilized janus droplets. ACS Appl Mater Interfaces 9:7804–7811. https://doi.org/10.1021/acsami.6b15791

    Article  CAS  PubMed  Google Scholar 

  133. Ahmed S, Annu IS, Yudha S (2016) Biosynthesis of gold nanoparticles: a green approach. J Photochem Photob iol B 161:141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034

    Article  CAS  Google Scholar 

  134. Chidambaram J, Upadhyay P, Sahal D et al (2024) Biosynthesis of gold nanoparticles mediated by medicinal phytometabolites: an effective tool against plasmodium falciparum and human breast cancer cells. J Drug Deliv Sci Technol 95:105520. https://doi.org/10.1016/j.jddst.2024.105520

    Article  CAS  Google Scholar 

  135. Venkatesh G, Serdaroğlu G, Üstün E et al (2024) Green synthesis, characterization, anti-cancer and antimicrobial activity of AuNPs extracted from Euphorbia antiquorum stem and flower: experimental and theoretical calculations. J Drug Deliv Sci Technol 95:105583. https://doi.org/10.1016/j.jddst.2024.105583

    Article  CAS  Google Scholar 

  136. Kaval U, Hoşgören H (2024) Biosynthesis, characterization, and biomedical applications of gold nanoparticles with cucurbita moschata duchesne ex poiret peel aqueous extracts. Molecules 29:923. https://doi.org/10.3390/molecules29050923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Gramah HA, Ahmad Z, Ibrahim EH (2024) Facile synthesis of silver and gold nanoparticles using mangrove (Avicennia marina) leaves extract and its cytotoxicity and larvicidal activity. Pak J Pharm Sci 37:297–305. https://doi.org/10.36721/PJPS.2024.37.2.REG.297-305.1

    Article  CAS  Google Scholar 

  138. Al-Sarraj F, Alotibi I, Al-Zahrani M et al (2023) Green synthesis of chitosan-capped gold nanoparticles using salvia officinalis extract: biochemical characterization and antimicrobial and cytotoxic activities. Molecules 28:7762. https://doi.org/10.3390/molecules28237762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Mishra A, Tripathy SK, Il YS (2011) Bio-synthesis of gold and silver nanoparticles from Candida guilliermondii and their antimicrobial effect against pathogenic bacteria. J Nanosci Nanotechnol 11:243–248. https://doi.org/10.1166/jnn.2011.3265

    Article  CAS  PubMed  Google Scholar 

  140. Zhang X, Qu Y, Shen W et al (2016) Biogenic synthesis of gold nanoparticles by yeast Magnusiomyces ingens LH-F1 for catalytic reduction of nitrophenols. Colloids Surf A Physicochem Eng Asp 497:280–285. https://doi.org/10.1016/j.colsurfa.2016.02.033

    Article  CAS  Google Scholar 

  141. Attia YA, Farag YE, Mohamed YMA et al (2016) Photo-extracellular synthesis of gold nanoparticles using Baker’s yeast and their anticancer evaluation against Ehrlich ascites carcinoma cells. New J Chem 40:9395–9402. https://doi.org/10.1039/c6nj01920j

    Article  CAS  Google Scholar 

  142. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28. https://doi.org/10.1007/BF03215529

    Article  CAS  Google Scholar 

  143. Nair V, Sambre D, Joshi S et al (2013) Yeast-derived melanin mediated synthesis of gold nanoparticles. J Bionanosci 7:159–168. https://doi.org/10.1166/jbns.2013.1108

    Article  CAS  Google Scholar 

  144. Candra A, Ahmed YW, Kitaw SL et al (2024) A green method for fabrication of a biocompatible gold-decorated-bacterial cellulose nanocomposite in spent coffee grounds kombucha: a sustainable approach for augmented wound healing. J Drug Deliv Sci Technol 94:105477. https://doi.org/10.1016/j.jddst.2024.105477

    Article  CAS  Google Scholar 

  145. Zhao X, Hou N, Wan C et al (2024) Gold nanoparticles synthesis mediated by fungus isolated from aerobic granular sludge: process and mechanisms. Heliyon 10(6):e28281. https://doi.org/10.1016/j.heliyon.2024.e28281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Soliman MKY, Abu-Elghait M, Salem SS, Azab MS (2022) Multifunctional properties of silver and gold nanoparticles synthesis by Fusarium pseudonygamai. Biomass Convers Biorefin. https://doi.org/10.1007/s13399-022-03507-9

    Article  Google Scholar 

  147. Alqurashi YE, Almalki SG, Ibrahim IM et al (2023) Biological synthesis, characterization, and therapeutic potential of S. commune-mediated gold nanoparticles. Biomolecules 13:1785. https://doi.org/10.3390/biom13121785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Mandhata CP, Bishoyi AK, Sahoo CR et al (2023) Investigation of in vitro antimicrobial, antioxidant and antiproliferative activities of Nostoc calcicola biosynthesized gold nanoparticles. Bioprocess Biosyst Eng 46:1341–1350. https://doi.org/10.1007/s00449-023-02905-1

    Article  CAS  PubMed  Google Scholar 

  149. Martinaga L, Ludwig R, Rezić I et al (2024) The application of bacteria-derived dehydrogenases and oxidases in the synthesis of gold nanoparticles. Appl Microbiol Biotechnol 108:62. https://doi.org/10.1007/s00253-023-12853-1

    Article  CAS  PubMed  Google Scholar 

  150. Kerdtoob S, Chanthasena P, Rosyidah A et al (2024) Streptomyces monashensis MSK03-mediated synthesis of gold nanoparticles: characterization and antibacterial activity. RSC Adv 14:4778–4787. https://doi.org/10.1039/d3ra07555a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Oliveira M, Sousa A, Sá S et al (2024) Harvesting the power of green synthesis: gold nanoparticles tailored for prostate cancer therapy. Int J Mol Sci 25:2277. https://doi.org/10.3390/ijms25042277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Namitha R, Abirami B, Anoop BS et al (2024) Synthesis and characterization of gold nanoparticles using Brevibacterium casei (SOSIST-06) isolated from Southern Ocean water samples and their in vitro and in silico anti-WSSV activity. Aquaculture 579:740205. https://doi.org/10.1016/j.aquaculture.2023.740205

    Article  CAS  Google Scholar 

  153. Mollania H, Oloomi-buygi M, Mollania N (2024) Catalytic and anti-cancer properties of platinum, gold, silver, and bimetallic Au-Ag nanoparticles synthesized by Bacillus sp. bacteria. J Biotechnol 379:33–45. https://doi.org/10.1016/j.jbiotec.2023.11.007

    Article  CAS  PubMed  Google Scholar 

  154. Oh DK, Khan F, Park SK et al (2024) Antimicrobial, antibiofilm, and antivirulence properties of Eisenia bicyclis-extracts and Eisenia bicyclis-gold nanoparticles towards microbial pathogens. Microb Pathog 188:106546. https://doi.org/10.1016/j.micpath.2024.106546

    Article  CAS  PubMed  Google Scholar 

  155. Baskar G, Palaniyandi T, Viswanathan S et al (2023) Pharmacological effect of gold nanoparticles from red algae Halymenia venusta on A549 cell line. Inorg Chem Commun 155:111005. https://doi.org/10.1016/j.inoche.2023.111005

    Article  CAS  Google Scholar 

  156. González-Ballesteros N, Fernandes M, Machado R et al (2023) Valorisation of the invasive macroalgae undaria pinnatifida (Harvey) suringar for the green synthesis of gold and silver nanoparticles with antimicrobial and antioxidant potential. Mar Drugs 21:397. https://doi.org/10.3390/md21070397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fernandes M, González-Ballesteros N, da Costa A et al (2023) Antimicrobial and anti-biofilm activity of silver nanoparticles biosynthesized with Cystoseira algae extracts. J Biol Inorg Chem 28:439–450. https://doi.org/10.1007/s00775-023-01999-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Viswanathan S, Palaniyandi T, Chellam DC et al (2023) Anti-cancer activity of Hypnea valentiae seaweed loaded gold nanoparticles through EMT signaling pathway in A549 cells. Biochem Syst Ecol 107:104606. https://doi.org/10.1016/j.bse.2023.104606

    Article  CAS  Google Scholar 

  159. Bromley KM, Patil AJ, Perriman AW et al (2008) Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. J Mater Chem 18:4796–4801. https://doi.org/10.1039/b809585j

    Article  CAS  Google Scholar 

  160. Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticles synthesis and their anti-biofilm activity. Indian J Microbiol 57:188–194. https://doi.org/10.1007/s12088-017-0640-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Shedbalkar U, Singh R, Wadhwani S et al (2014) Microbial synthesis of gold nanoparticles: current status and future prospects. Adv Colloid Interface Sci 209:40–48. https://doi.org/10.1016/j.cis.2013.12.011

    Article  CAS  PubMed  Google Scholar 

  162. Nadeem M, Abbasi BH, Younas M et al (2017) A review of the green syntheses and anti-microbial applications of gold nanoparticles. Green Chem Lett Rev 10:216–227. https://doi.org/10.1080/17518253.2017.1349192

    Article  CAS  Google Scholar 

  163. Satyanarayana Reddy A, Chen CY, Chen CC et al (2010) Biological synthesis of gold and silver nanoparticles mediated by the bacteria Bacillus subtilis. J Nanosci Nanotechnol 10:6567–6574. https://doi.org/10.1166/jnn.2010.2519

    Article  CAS  PubMed  Google Scholar 

  164. Deplanche K, Macaskie LE (2008) Biorecovery of gold by Escherichia coli and Desulfovibrio desulfuricans. Biotechnol Bioeng 99:1055–1064. https://doi.org/10.1002/bit.21688

    Article  CAS  PubMed  Google Scholar 

  165. Ahmad T, Bustam MA, Irfan M et al (2019) Mechanistic investigation of phytochemicals involved in green synthesis of gold nanoparticles using aqueous Elaeis guineensis leaves extract: role of phenolic compounds and flavonoids. Biotechnol Appl Biochem 66:698–708. https://doi.org/10.1002/bab.1787

    Article  CAS  PubMed  Google Scholar 

  166. Thangamani N, Bhuvaneshwari N (2019) Green synthesis of gold nanoparticles using Simarouba glauca leaf extract and their biological activity of micro-organism. Chem Phys Lett 732:136587. https://doi.org/10.1016/j.cplett.2019.07.015

    Article  CAS  Google Scholar 

  167. Ullah U, Rauf A, El-Sharkawy E et al (2021) Green synthesis, in vivo and in vitro pharmacological studies of Tamarindus indica based gold nanoparticles. Bioprocess Biosyst Eng 44:1185–1192. https://doi.org/10.1007/s00449-020-02500-8

    Article  CAS  PubMed  Google Scholar 

  168. Rauf A, Ahmad T, Khan A et al (2021) Green synthesis and biomedicinal applications of silver and gold nanoparticles functionalized with methanolic extract of Mentha longifolia. Artif Cells Nanomed Biotechnol 49:194–203. https://doi.org/10.1080/21691401.2021.1890099

    Article  CAS  PubMed  Google Scholar 

  169. Doria G, Conde J, Veigas B et al (2012) Noble metal nanoparticles for biosensing applications. Sensors (Basel) 12:1657–1687. https://doi.org/10.3390/s120201657

    Article  CAS  PubMed  Google Scholar 

  170. Ghosh P, Han G, De M et al (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315. https://doi.org/10.1016/j.addr.2008.03.016

    Article  CAS  PubMed  Google Scholar 

  171. Zhang X, Hu R, Zhang K et al (2016) An ultrasensitive label-free immunoassay for C-reactive protein detection in human serum based on electron transfer. Anal Methods 8:6202–6207. https://doi.org/10.1039/c6ay01464j

    Article  CAS  Google Scholar 

  172. Howes PD, Chandrawati R, Stevens MM (2014) Colloidal nanoparticles as advanced biological sensors. Science. https://doi.org/10.1126/science.1247390

    Article  PubMed  Google Scholar 

  173. Wilcoxon J (2009) Optical absorption properties of dispersed gold and silver alloy nanoparticles. J Phys Chem B 113:2647–2656. https://doi.org/10.1021/jp806930t

    Article  CAS  PubMed  Google Scholar 

  174. Nath N, Chilkoti A (2002) A colorimetric gold nanoparticle sensor to interrogate biomolecular interactions in real time on a surface. Anal Chem 74:504–509. https://doi.org/10.1021/ac015657x

    Article  CAS  PubMed  Google Scholar 

  175. Frederix F, Friedt JM, Choi KH et al (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900. https://doi.org/10.1021/ac0346609

    Article  CAS  PubMed  Google Scholar 

  176. Liu X, Dai Q, Austin L et al (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782. https://doi.org/10.1021/ja711298b

    Article  CAS  PubMed  Google Scholar 

  177. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110:7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  PubMed  Google Scholar 

  178. Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677. https://doi.org/10.1021/jp026731y

    Article  CAS  Google Scholar 

  179. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107–118. https://doi.org/10.1007/s11468-007-9031-1

    Article  CAS  Google Scholar 

  180. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217. https://doi.org/10.1039/b514191e

    Article  CAS  PubMed  Google Scholar 

  181. Alivisatos P (2004) The use of nanocrystals in biological detection. Nat Biotechnol 22:47–52. https://doi.org/10.1038/nbt927

    Article  CAS  PubMed  Google Scholar 

  182. Katz E, Willner I (2004) Integrated nanoparticle-biomolecule hybrid systems: synthesis, properties, and applications. Angew Chemie Int Ed Engl 43:6042–6108. https://doi.org/10.1002/anie.200400651

    Article  CAS  Google Scholar 

  183. Sönnichsen C, Reinhard BM, Liphardt J, Alivisatos AP (2005) A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23:741–745. https://doi.org/10.1038/nbt1100

    Article  CAS  PubMed  Google Scholar 

  184. El-Sayed IH, Huang X, El-Sayed MA (2005) Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. Nano Lett 5:829–834. https://doi.org/10.1021/nl050074e

    Article  CAS  PubMed  Google Scholar 

  185. Warheit DB, Laurence BR, Reed KL et al (2004) Comparative pulmonary toxicity assessment of single-wall carbon nanotubes in rats. Toxicol Sci 77:117–125. https://doi.org/10.1093/toxsci/kfg228

    Article  CAS  PubMed  Google Scholar 

  186. Shukla R, Bansal V, Chaudhary M et al (2005) Biocompatibility of gold nanoparticles and their endocytotic fate inside the cellular compartment: a microscopic overview. Langmuir 21:10644–10654. https://doi.org/10.1021/la0513712

    Article  CAS  PubMed  Google Scholar 

  187. Link S, Mohamed MB, El-Sayed MA (1999) Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J Phys Chem B 103:3073–3077. https://doi.org/10.1021/jp990183f

    Article  CAS  Google Scholar 

  188. Murphy CJ, Sau TK, Gole AM et al (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857–13870. https://doi.org/10.1021/jp0516846

    Article  CAS  PubMed  Google Scholar 

  189. Sokolov K, Follen M, Aaron J et al (2003) Real-time vital optical imaging of precancer using anti-epidermal growth factor receptor antibodies conjugated to gold nanoparticles. Cancer Res 63:1999–2004

    CAS  PubMed  Google Scholar 

  190. Sönnichsen C, Franzl T, Wilk T et al (2002) Drastic reduction of plasmon dam** in gold nanorods. Phys Rev Lett. https://doi.org/10.1103/PhysRevLett.88.077402

    Article  PubMed  Google Scholar 

  191. Swierczewska M, Lee S, Chen X (2011) The design and application of fluorophore-gold nanoparticle activatable probes. Phys Chem Chem Phys 13:9929–9941. https://doi.org/10.1039/C0CP02967J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Wu Y, Ali MRK, Chen K et al (2019) Gold nanoparticles in biological optical imaging. Nano Today 24:120–140. https://doi.org/10.1016/j.nantod.2018.12.006

    Article  CAS  Google Scholar 

  193. Lee S, Cha EJ, Park K et al (2008) A near-infrared-fluorescence-quenched gold-nanoparticle imaging probe for in vivo drug screening and protease activity determination. Angew Chem Int Ed Engl 47:2804–2807. https://doi.org/10.1002/anie.200705240

    Article  CAS  PubMed  Google Scholar 

  194. He H, **e C, Ren J (2008) Nonbleaching fluorescence of gold nanoparticles and its applications in cancer cell imaging. Anal Chem 80:5951–5957. https://doi.org/10.1021/ac8005796

    Article  CAS  PubMed  Google Scholar 

  195. Shawky SM, Bald D, Azzazy HME (2010) Direct detection of unamplified hepatitis C virus RNA using unmodified gold nanoparticles. Clin Biochem 43:1163–1168. https://doi.org/10.1016/j.clinbiochem.2010.07.001

    Article  CAS  PubMed  Google Scholar 

  196. Li T, Zhang W, Hu E et al (2021) Integrated metabolomics and network pharmacology to reveal the mechanisms of hydroxysafflor yellow A against acute traumatic brain injury. Comput Struct Biotechnol J 19:1002–1013. https://doi.org/10.1016/j.csbj.2021.01.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Sergeev BM, Kiryukhin MV, Rubtsova MY, Prusov AN (2003) Synthesis of protein a conjugates with silver nanoparticles. Colloid J 65:636–638. https://doi.org/10.1023/A:1026192327440

    Article  CAS  Google Scholar 

  198. Belloni J (1996) Metal nanocolloids. Curr Opin Colloid Interface Sci 1:184–196. https://doi.org/10.1016/S1359-0294(96)80003-3

    Article  CAS  Google Scholar 

  199. Moitra P, Alafeef M, Alafeef M et al (2020) Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14:7617–7627. https://doi.org/10.1021/acsnano.0c03822

    Article  CAS  Google Scholar 

  200. Huang C, Wen T, Shi FJ et al (2020) Rapid detection of IgM antibodies against the SARS-CoV-2 Virus via colloidal gold nanoparticle-based lateral-flow assay. ACS Omega 5:12550–12556. https://doi.org/10.1021/acsomega.0c01554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Wang Z, Ma L (2009) Gold nanoparticle probes. Coord Chem Rev 253:1607–1618. https://doi.org/10.1016/J.CCR.2009.01.005

    Article  CAS  Google Scholar 

  202. Gestwicki JE, Strong LE, Kiessling LL (2000) Visualization of single multivalent receptor - ligand complexes by transmission electron microscopy. Angew Chem Int Ed Eng 39:4567–4570. https://doi.org/10.1002/1521-3773(20001215)39:24%3c4567::AID-ANIE4567%3e3.0.CO;2-F

    Article  CAS  Google Scholar 

  203. Baptista P, Pereira E, Eaton P et al (2008) Gold nanoparticles for the development of clinical diagnosis methods. Anal Bioanal Chem 391:943–950. https://doi.org/10.1007/s00216-007-1768-z

    Article  CAS  PubMed  Google Scholar 

  204. Link S, El-Sayed MA (2000) Shape and size dependence of radiative, non-radiative and photothermal properties of gold nanocrystals. Int Rev Phys Chem 19:409–453. https://doi.org/10.1080/01442350050034180

    Article  CAS  Google Scholar 

  205. Orendorff CJ, Murphy CJ (2006) Quantitation of metal content in the silver-assisted growth of gold nanorods. J Phys Chem B 110:3990–3994. https://doi.org/10.1021/jp0570972

    Article  CAS  PubMed  Google Scholar 

  206. Hurst SJ, Lytton-Jean AKR, Mirkin CA (2006) Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 78:8313–8318. https://doi.org/10.1021/ac0613582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Omiccioli E, Amagliani G, Brandi G, Magnani M (2009) A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol 26:615–622. https://doi.org/10.1016/j.fm.2009.04.008

    Article  CAS  PubMed  Google Scholar 

  208. Park YM, Han YD, Chun HJ, Yoon HC (2017) Ambient light-based optical biosensing platform with smartphone-embedded illumination sensor. Biosens Bioelectron 93:205–211. https://doi.org/10.1016/j.bios.2016.09.007

    Article  CAS  PubMed  Google Scholar 

  209. Li P, Zhang B, Gopinath SCB et al (2022) Zero-dimensional gold application in colorimetrically optimized ELISA signal enhancement for diagnosing osteoarthritis. Proc Biochem 122:224–229. https://doi.org/10.1016/j.procbio.2022.09.002

    Article  CAS  Google Scholar 

  210. Song SY, Han YD, Hong SY et al (2012) Chip-based cartilage oligomeric matrix protein detection in serum and synovial fluid for osteoarthritis diagnosis. Anal Biochem 420:139–146. https://doi.org/10.1016/j.ab.2011.09.012

    Article  CAS  PubMed  Google Scholar 

  211. Ferrua B, Becker P, Schaffar L et al (1988) Detection of human IL-1α and IL-1β at the subpicomolar level by colorimetric sandwich enzyme immunoassay. J Immunol Methods 114:41–48. https://doi.org/10.1016/0022-1759(88)90151-2

    Article  CAS  PubMed  Google Scholar 

  212. Chiang CY, Hsieh ML, Huang KW et al (2010) Fiber-optic particle plasmon resonance sensor for detection of interleukin-1β in synovial fluids. Biosens Bioelectron 26:1036–1042. https://doi.org/10.1016/j.bios.2010.08.047

    Article  CAS  PubMed  Google Scholar 

  213. Herrmann M, Veres T, Tabrizian M (2008) Quantification of low-picomolar concentrations of TNF-α in serum using the dual-network microfluidic ELISA platform. Anal Chem 80:5160–5167. https://doi.org/10.1021/ac800427z

    Article  CAS  PubMed  Google Scholar 

  214. Huang YC, Chiang CY, Li CH et al (2013) Quantification of tumor necrosis factor-α and matrix metalloproteinases-3 in synovial fluid by a fiber-optic particle plasmon resonance sensor. Analyst 138:4599–4606. https://doi.org/10.1039/c3an00276d

    Article  CAS  PubMed  Google Scholar 

  215. Kao YH, Wu KL, Tu YK et al (2014) Develo** and assessing an immunochromatographic strip for detecting osteoarthritis based on urine cartilage oligomeric matrix proteins. Biomed Eng (Singapore). https://doi.org/10.4015/S1016237214500720

    Article  Google Scholar 

  216. Choi J, Yang J, Jang E et al (2012) Gold nanostructures as photothermal therapy agent for cancer. Anticancer Agents Med Chem 11:953–964. https://doi.org/10.2174/187152011797927599

    Article  Google Scholar 

  217. Li W, Chen X (2015) Gold nanoparticles for photoacoustic imaging. Nanomedicine 10:299–320. https://doi.org/10.2217/nnm.14.169

    Article  CAS  PubMed  Google Scholar 

  218. Chen YS, Frey W, Kim S et al (2011) Silica-coated gold nanorods as photoacoustic signal nanoamplifiers. Nano Lett 11:348–354. https://doi.org/10.1021/nl1042006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Tian F, Lyu J, Shi J, Yang M (2017) Graphene and graphene-like two-denominational materials based fluorescence resonance energy transfer (FRET) assays for biological applications. Biosens Bioelectron 89:123–135. https://doi.org/10.1016/j.bios.2016.06.046

    Article  CAS  PubMed  Google Scholar 

  220. Au MT, Shi J, Fan Y et al (2021) Nerve growth factor-targeted molecular theranostics based on molybdenum disulfide nanosheet-coated gold nanorods (MoS2-AuNR) for osteoarthritis pain. ACS Nano 15:11711–11723. https://doi.org/10.1021/acsnano.1c02454

    Article  CAS  PubMed  Google Scholar 

  221. Peng S, Zheng Q, Zhang X et al (2013) Detection of ADAMTS-4 activity using a fluorogenic peptide-conjugated Au nanoparticle probe in human knee synovial fluid. ACS Appl Mater Interfaces 5:6089–6096. https://doi.org/10.1021/am400854z

    Article  CAS  PubMed  Google Scholar 

  222. Liu Z, Hu X, Yang P et al (2018) Diagnostic utility of fluorogenic peptide-conjugated au nanoparticle probe corroborated by rabbit model of mild cartilage injury and panel of osteoarthritic patients. Am J Transl Res 10:2277–2289

    CAS  PubMed  PubMed Central  Google Scholar 

  223. López-Cortés R, Formigo J, Reboiro-Jato M et al (2016) A methodological approach based on gold-nanoparticles followed by matrix assisted laser desorption ionization time of flight mass spectrometry for the analysis of urine profiling of knee osteoarthritis. Talanta 150:638–645. https://doi.org/10.1016/j.talanta.2015.06.043

    Article  CAS  PubMed  Google Scholar 

  224. Perk B, Büyüksünetçi YT, Anık Ü (2023) Gold nanoparticle deposited electrochemical sensor for hyaluronic acid detection. Chem Pap 77:4319–4329. https://doi.org/10.1007/S11696-023-02781-9

    Article  CAS  Google Scholar 

  225. Lee H, Lee K, Kim IK, Park TG (2008) Synthesis, characterization, and in vivo diagnostic applications of hyaluronic acid immobilized gold nanoprobes. Biomaterials 29:4709–4718. https://doi.org/10.1016/J.BIOMATERIALS.2008.08.038

    Article  CAS  PubMed  Google Scholar 

  226. Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ (1996) A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382:607–609. https://doi.org/10.1038/382607a0

    Article  CAS  PubMed  Google Scholar 

  227. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:368–373. https://doi.org/10.1038/nature05058

    Article  CAS  PubMed  Google Scholar 

  228. Gubala V, Harris LF, Ricco AJ et al (2012) Point of care diagnostics: Status and future. Anal Chem 84:487–515. https://doi.org/10.1021/ac2030199

    Article  CAS  PubMed  Google Scholar 

  229. Lee JH, Lee T, Choi JW (2016) Nano-biosensor for monitoring the neural differentiation of stem cells. Nanomaterials 6:224. https://doi.org/10.3390/nano6120224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Radhakumary C, Sreenivasan K (2012) Rapid and highly selective dipchecking for cyanide ions in aqueous media. Analyst 137:5387–5391. https://doi.org/10.1039/c2an35886g

    Article  CAS  PubMed  Google Scholar 

  231. Daniel WL, Han MS, Lee JS, Mirkin CA (2009) Colorimetric Nitrite and Nitrate detection with gold nanoparticle probes and kinetic end points. J Am Chem Soc 131:6362–6263. https://doi.org/10.1021/ja901609k

    Article  CAS  PubMed  Google Scholar 

  232. Li B, Du Y, Dong S (2009) DNA based gold nanoparticles colorimetric sensors for sensitive and selective detection of Ag(I) ions. Anal Chim Acta 644:78–82. https://doi.org/10.1016/j.aca.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  233. Liu J, Lu Y (2006) Preparation of aptamer-linked gold nanoparticle purple aggregates for colorimetric sensing of analytes. Nat Protoc 1:246–252. https://doi.org/10.1038/nprot.2006.38

    Article  CAS  PubMed  Google Scholar 

  234. Diegoli S, Manciulea AL, Begum S et al (2008) Interaction between manufactured gold nanoparticles and naturally occurring organic macromolecules. Sci Total Environ 402:51–61. https://doi.org/10.1016/j.scitotenv.2008.04.023

    Article  CAS  PubMed  Google Scholar 

  235. Goluch ED, Nam JM, Georganopoulou DG et al (2006) A bio-barcode assay for on-chip attomolar-sensitivity protein detection. Lab Chip 6:1293–1299. https://doi.org/10.1039/b606294f

    Article  CAS  PubMed  Google Scholar 

  236. Chen GH, Chen WY, Yen YC et al (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal Chem 86:6843–6849. https://doi.org/10.1021/ac5008688

    Article  CAS  PubMed  Google Scholar 

  237. Yang C, Wang Y, Marty JL, Yang X (2011) Aptamer-based colorimetric biosensing of Ochratoxin A using unmodified gold nanoparticles indicator. Biosens Bioelectron 26:2724–2727. https://doi.org/10.1016/j.bios.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  238. Wang L, Liu X, Hu X et al (2006) Unmodified gold nanoparticles as a colorimetric probe for potassium DNA aptamers. Chem Commun 28:3780–3782. https://doi.org/10.1039/b607448k

    Article  CAS  Google Scholar 

  239. Hanlon EB, Manoharan R, Koo TW et al (2000) Prospects for in vivo Raman spectroscopy. Phys Med Biol 45:R1-59. https://doi.org/10.1088/0031-9155/45/2/201

    Article  CAS  PubMed  Google Scholar 

  240. Banholzer MJ, Millstone JE, Qin L, Mirkin CA (2008) Rationally designed nanostructures for surface-enhanced Raman spectroscopy. Chem Soc Rev 37:885–897. https://doi.org/10.1039/b710915f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Zavaleta CL, Smith BR, Walton I et al (2009) Multiplexed imaging of surface enhanced Raman scattering nanotags in living mice using noninvasive Raman spectroscopy. Proc Natl Acad Sci U S A 106:13511–13516. https://doi.org/10.1073/pnas.0813327106

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the research funding support by Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India to National Institute of Pharmaceutical Education and Research (NIPER) Hyderabad, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jitender Madan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mourya, A., Arya, S., Singh, A. et al. Gold Nanoparticles as a Tool to Detect Biomarkers in Osteoarthritis: New Insights. Indian J Microbiol (2024). https://doi.org/10.1007/s12088-024-01331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12088-024-01331-5

Keywords

Navigation