Log in

Insights Into the BR2/PGP1-mediated Patterns for Shoot and Root Growth in Maize Early Seedling Development by Comparative Transcriptome Sequencing

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plant shoot and root growth is regulated by multiple factors, including the hormone auxin. A maize brachytic2 (br2) mutant displays a shortened shoot and root with high auxin concentration in their apexes, where BR2 encodes an auxin transporter P-glycoprotein1 (PGP1). We employed comparative transcriptome sequencing to explore the BR2/PGP1-mediated patterns for shoot and root growth among br2, wild type (WT), and hybrid F1 (br2 × WT). The results show 352 genes in the br2 shoot and 234 genes in the br2 root are differentially expressed compared to WT and F1. Zm00001d045203 and Zm00001d031562 were identified as two auxin-responsive genes in both the shoot and root. The Zm00001d045203 gene is down-regulated in br2 and encodes an Aux/IAA inhibitor involved in the SCFTIR1/AFB-mediated auxin signaling pathway. The up-regulated Zm00001d031562 gene encodes a small GTPase belonging to the Rab/Ypt family, which takes part in auxin-mediated responses in Arabidopsis. Cytology analysis reveals that reduced cell elongation affects the shoot and root growth of br2. The Zm00001d043477 gene is down-regulated and encodes a member of the cellulose synthase protein family, possibly reducing cell elongation in the br2 shoot and root. These results reveal the specific regulation of auxin actions and cell responses by BR2/PGP1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abel S, Theologis A (1996) Early genes and auxin action. Plant Physiol 111:9–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Band L, Wells D, Fozard J, Ghetiu T, French A, Pound M, Wilson M, Yu L, Li W, Hijazi H, Oh J, Pearce S, Perez-Amador M, Yun J, Kramer E, Alonso J, Godin C, Vernoux T, Hodgman T, Pridmore T, Swarup R, King J, Bennett M (2014) Systems analysis of auxin transport in the Arabidopsis root apex. Plant Cell 26:862–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benjamins R, Scheres B (2008) Auxin: the loo** star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  • Benková E, Michniewicz M, Sauer M, Teichmann T, Seifertová D, Jürgens G, Friml J (2003) Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 115:591–602

    Article  PubMed  Google Scholar 

  • Bennett T, Hines G, van Rongen M, Waldie T, Sawchuk MG, Scarpella E, Ljung K, Leyser O (2016) Connective Auxin Transport in the Shoot Facilitates Communication between Shoot Apices. PLoS Biology 14:e1002446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blakeslee J, Bandyopadhyay A, Lee O, Mravec J, Titapiwatanakun B, Sauer M, Makam S, Cheng Y, Bouchard R, Adamec J, Geisler M, Nagashima A, Sakai T, Martinoia E, Friml J, Peer W, Murphy A (2007) Interactions among PIN-FORMED and P-glycoprotein auxin transporters in Arabidopsis. Plant Cell 19: 131–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blilou I, Xu J, Wildwater M, Willemsen V, Paponov I, Friml J, Heidstra R, Aida M, Palme K, Scheres B (2005) The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 433:39–44

    Article  CAS  PubMed  Google Scholar 

  • Cho M, Cho H (2013) The function of ABCB transporters in auxin transport. Plant Signal Behav 8:e22990

    Article  PubMed  Google Scholar 

  • Fagard M, Desnos T, Desprez T, Goubet F, Refregier G, Mouille G, McCann M, Rayon C, Vernhettes S, Höfte H (2000) PROCUSTE1 encodes a cellulose synthase required for normal cell elongation specifically in roots and dark-grown hypocotyls of Arabidopsis. Plant Cell 12:2409–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Friml J, Benková E, Blilou I, Wisniewska J, Hamann T, Ljung K, Woody S, Sandberg G, Scheres B, Jürgens G, Palme K (2002a) AtPIN4 mediates sink-driven auxin gradients and root patterning in Arabidopsis. Cell 108:661–673

    Article  CAS  PubMed  Google Scholar 

  • Friml J, Wisniewska J, Benková E, Mendgen K, Palme K (2002b) Lateral relocation of auxin efflux regulator PIN3 mediates tropism in Arabidopsis. Nature 415:806–809

    Article  PubMed  Google Scholar 

  • Friml J, Yang X, Michniewicz M, Weijers D, Quint A, Tietz O, Benjamins R, Ouwerkerk P, Ljung K, Sandberg G, Hooykaas P, Palme K, Offringa R (2004) A PINOID-dependent binary switch in apical-basal PIN polar targeting directs auxin efflux. Science 306:862–865

    Article  CAS  PubMed  Google Scholar 

  • Galinha C, Hofhuis H, Luijten M, Willemsen V, Blilou I, Heidstra R, Scheres B (2007) PLETHORA proteins as dose-dependent master regulators of Arabidopsis root development. Nature 449: 1053–1057

    Article  CAS  PubMed  Google Scholar 

  • Geisler M, Murphy AS (2006) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580: 1094–1102

    Article  CAS  PubMed  Google Scholar 

  • Goh T, Uchida W, Arakawa S, Ito E, Dainobu T, Ebine K, Takeuchi M, Sato K, Ueda T, Nakano A (2007) VPS9a, the common activator for two distinct types of Rab5 GTPases, is essential for the development of Arabidopsis thaliana. Plant Cell 19:3504–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grieneisen VA, Xu J, Maree AF, Hogeweg P, Scheres B (2007) Auxin transport is sufficient to generate a maximum and gradient guiding root growth. Nature 449:1008–1013

    Article  CAS  PubMed  Google Scholar 

  • Grones P, Chen X, Simon S, Kaufmann W, De Rycke R, Nodzyński T, Zažímalová E, Friml J (2015) Auxin-binding pocket of ABP1 is crucial for its gain-of-function cellular and developmental roles. J Exp Bot 66:5055–5065

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle T, Ulmasov T, Hagen G (1998) The ARF family of transcription factors and their role in plant hormone-responsive transcription. Cell Mol Life Sci 54:619–627

    Article  CAS  PubMed  Google Scholar 

  • He M, Lan M, Zhang B, Zhou Y, Wang Y, Zhu L, Yuan M, Fu Y (2018) Rab-H1b Is Essential for Trafficking of Cellulose Synthase and for Hypocotyl Growth in Arabidopsis thaliana. J Integr Plant Biol 61:1051–1069

    Article  CAS  Google Scholar 

  • Hu H, Zhang R, Tao Z, Li X, Li Y, Huang J, Li X, Han X, Feng S, Zhang G, Peng L (2018) Cellulose synthase mutants distinctively affect cell growth and cell wall integrity for plant biomass production in Arabidopsis. Plant Cell Physiol 59:1144–1157

    Article  CAS  PubMed  Google Scholar 

  • Inoue T, Kondo Y, Naramoto S, Nakano A, Ueda T (2013) RAB5 activation is required for multiple steps in Arabidopsis thaliana root development. Plant Cell Physiol 54:1648–1659

    Article  CAS  PubMed  Google Scholar 

  • Jansen L, Roberts I, De Rycke R, Beeckman T (2012) Phloem-associated auxin response maxima determine radial positioning of lateral roots in maize. Phil Trans R Soc B 367:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Knoller AS, Blakeslee JJ, Richards EL, Peer WA, Murphy AS (2010) Brachytic2/ZmABCB1 functions in IAA export from intercalary meristems. J Exp Bot 61:3689–3696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koh E, Kwon Y, Kim K, Hong S, Lee H (2009) Altered ARA2 (RABA1a) expression in Arabidopsis reveals the involvement of a Rab/YPT family member in auxin-mediated responses. Plant Mol Biol 70:113–122

    Article  CAS  PubMed  Google Scholar 

  • Kytidou K, Beekwilder J, Artola M, van Meel E, Wilbers R, Moolenaar G, Goosen N, Ferraz M, Katzy R, Voskamp P, Florea B, Hokke C, Overkleeft H, Schots A, Bosch D, Pannu N, Aerts J (2018) α-galactosidase A1.1 can functionally complement human α-galactosidase A deficiency associated with Fabry disease. J Biol Chem 293:10042–10058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2005) Auxin distribution and plant pattern formation: how many angels can dance on the point of PIN? Cell 121:819–822

    Article  CAS  PubMed  Google Scholar 

  • Long J, Barton M (1998) The development of apical embryonic pattern in Arabidopsis. Development 125:3027–3035

    CAS  PubMed  Google Scholar 

  • Maraschin FS, Memelink J, Offringa R (2009) Auxin-induced, SCF(TIR1)-mediated poly-ubiquitination marks AUX/IAA proteins for degradation. Plant J 59:100–109

    Article  CAS  Google Scholar 

  • Multani DS, Briggs SP, Chamberlin MA, Blakeslee JJ, Murphy AS, Johal GS (2003) Loss of an MDR transporter in compact stalks of maize br2 and sorghum dw3 mutants. Science 302:81–84

    Article  CAS  PubMed  Google Scholar 

  • Oh E, Zhu J, Bai M, Arenhart R, Sun Y, Wang Z (2014) Cell elongation is regulated through a central circuit of interacting transcription factors in the Arabidopsis hypocotyl. Elife 3

  • Overvoorde P, Fukaki H, Beeckman T (2010) Auxin control of root development. Cold Spring Harb Perspect Biol 2:a001537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perrot-Rechenmann C (2010) Cellular responses to auxin: division versus expansion. Cold Spring Harb Perspect Biol 2:a001446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puig J, Pauluzzi G, Guiderdoni E, Gantet P (2012) Regulation of shoot and root development through mutual signaling. Mol Plant 5:974–983

    Article  CAS  PubMed  Google Scholar 

  • Yue R, Tie S, Sun T, Zhang L, Yang Y, Qi J, Yan S, Han X, Wang H, Shen C (2015) Genome-wide identification and expression profiling analysis of ZmPIN, ZmPILS, ZmLAX and ZmABCB auxin transporter gene families in maize (Zea mays L.) under various abiotic stresses. PloS one 10:e0118751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Bannigan A, Sulaman W, Pechter P, Blancaflor E, Baskin T (2007) Auxin, actin and growth of the Arabidopsis thaliana primary root. Plant J 50:514–528

    Article  CAS  PubMed  Google Scholar 

  • Reinhardt D, Pesce E, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  CAS  PubMed  Google Scholar 

  • Sidler M, Hassa P, Hasan S, Ringli C, Dudler R (1998) Involvement of an ABC transporter in a developmental pathway regulating hypocotyl cell elongation in the light. Plant Cell 10:1623–1636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strader L, Zhao Y (2016) Auxin perception and downstream events. Curr Opin Plant Biol 33:8–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su Y, Zhao X, Liu Y, Zhang C, O’Neill S, Zhang X (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swid N, Nevo R, Kiss V, Kapon R, Dagan S, Snir O, Adam Z, Falconet D, Reich Z, Charuvi D (2018) Differential impacts of FtsZ proteins on plastid division in the shoot apex of Arabidopsis. Dev Biol

  • Takacs E, Li J, Du C, Ponnala L, Janick-Buckner D, Yu J, Muehlbauer G, Schnable P, Timmermans M, Sun Q, Nettleton D, Scanlon M (2012) Ontogeny of the maize shoot apical meristem. Plant cell 24:3219–3234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teale W, Paponov I, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Re Mol Cell Biol 7:847–859

    Article  CAS  Google Scholar 

  • Ugartechea-Chirino Y, Swarup R, Swarup K, Péret B, Whitworth M, Bennett M, Bougourd S (2010) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105:277–289

    Article  CAS  PubMed  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Vernoux T, Besnard F, Traas J (2010) Auxin at the shoot apical meristem. Cold Spring Harb Perspect Biol 2:a001487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vernoux T, Brunoud G, Farcot E, Morin V, Van den Daele H, Legrand J, Oliva M, Das P, Larrieu A, Wells D, Guédon Y, Armitage L, Picard F, Guyomarc’h S, Cellier C, Parry G, Koumproglou R, Doonan J, Estelle M, Godin C, Kepinski S, Bennett M, De Veylder L, Traas J (2011) The auxin signalling network translates dynamic input into robust patterning at the shoot apex. Mol Syst Biol 7:508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang W, Bai M, Wang Z (2014) The brassinosteroid signaling network-a paradigm of signal integration. Curr Opin Plant Biol 21:147–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Jiao Y (2017) Auxin and above-ground meristems. J Exp Bot 69:147–154

    Article  CAS  Google Scholar 

  • Watanabe Y, Schneider R, Barkwill S, Gonzales-Vigil E, Hill J, Samuels A, Persson S, Mansfield S (2018) Cellulose synthase complexes display distinct dynamic behaviors during xylem transdifferentiation. Proc Natl Acad Sci USA 115:E6366–E6374

    Article  CAS  PubMed  Google Scholar 

  • Weijers D, Jürgens G (2004) Funneling auxin action: specificity in signal transduction. Curr Opin Plant Biol 7:687–693

    Article  CAS  PubMed  Google Scholar 

  • Woll K, Borsuk L, Stransky H, Nettleton D, Schnable P, Hochholdinger F (2005) Isolation, characterization, and pericycle-specific transcriptome analyses of the novel maize lateral and seminal root initiation mutant rum1. Plant Physiol 139:1255–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zazímalová E S, Murphy A, Yang H, Hoyerová K, Hošek P (2010) Auxin Transporters—Why So Many? Cold Spring Harb Perspect Biol 2:a001552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Paschold A, Marcon C, Liu S, Tai H, Nestler J, Yeh C, Opitz N, Lanz C, Schnable P, Hochholdinger F (2014) The Aux/IAA gene rum1 involved in seminal and lateral root formation controls vascular patterning in maize (Zea mays L.) primary roots. J Exp Bot 65:4919–4930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yubi Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zheng, L., Zhang, H. et al. Insights Into the BR2/PGP1-mediated Patterns for Shoot and Root Growth in Maize Early Seedling Development by Comparative Transcriptome Sequencing. J. Plant Biol. 62, 217–228 (2019). https://doi.org/10.1007/s12374-018-0394-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-018-0394-y

Keywords

Navigation