Log in

Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Auxins can induce the formation of nodule-like structures (NLS) in plant roots even in the absence of rhizobia and nitrogen-fixing bacteria can colonize these structures. Interestingly, NLS can be induced in roots of both legumes and non-legumes. However, our understanding of NLS formation in non-legumes at a molecular level is limited. This study aims to investigate NLS formation at a developmental and molecular level in Brachypodium distachyon. We treated Brachypodium roots with the synthetic auxin, 2,4-D, to induce NLS at a high frequency (> 80%) under controlled conditions. A broad base and a diffuse meristem characterized these structures. Next, we performed a comprehensive RNA-sequencing experiment to identify differentially expressed genes (DEGs) in Brachypodium roots during NLS formation. We identified 618 DEGs; several of which are promising candidates for control of NLS based on their biological and molecular functions. We validated the expression pattern of several genes via RT-PCR. Next, we compared the expression profile of Brachypodium roots with rice roots during NLS formation. We identified 76 single-copy ortholog pairs in rice and Brachypodium that are both differentially expressed during this process. Some of these genes are involved in auxin signaling, root development, and legume-rhizobia symbiosis. We established an experimental system to study NLS formation in Brachypodium at a developmental and genetic level, and used RNA-sequencing analysis to understand the molecular mechanisms controlling this root organogenesis program. Furthermore, our comparative transcriptome analysis in Brachypodium and rice identified a key set of genes for further investigating this genetic pathway in grasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

NLS:

nodule-like structures

RNS:

root nodule symbiosis

LHK1:

Lotus histidine kinase 1

CRE1:

cytokinin response 1

2,4-D:

2,4-dichlorophenoxyacetic acid

dpt:

days post treatment

DEGs:

differentially expressed genes

FDR:

false discovery rate

FC:

fold change

GO:

gene ontology

SEA:

singular enrichment analysis

TFs:

transcription factors

AP2/ERF:

APETALA2/ethylene responsive factor

NAC:

NAM (for no apical meristem), ATAF1 and -2, and CUC2 (for cup-shaped cotyledon)

ARFs:

auxin response factors

bHLH:

basic helix-loop-helix

GRAS:

gibberellic-acid insensitive (GAI), REPRESSOR of GAI (RGA), and SCARECROW (SCR)

LOB:

lateral organ boundaries

WUS:

WUSCHEL

RLKs:

receptor-like kinases

LRR:

leucine-rich repeat

ABC:

ATP-binding cassette

MATE:

multi-antimicrobial extrusion protein

SAUR:

small auxin upregulated RNA

RT-PCR:

reverse transcriptase polymerase chain reaction

PLT:

PLETHORA

WOX11:

WUSCHEL-RELATED HOMEOBOX 11

BRX:

BREVIS RADIX

SCR:

SCARECROW

SHR:

SHORT ROOT

NSP1:

NODULATION SIGNALING PATHWAY1

NSP2:

NODULATION SIGNALING PATHWAY2

PIN:

PIN-FORMED

LAX:

LIKE AUXIN1

CLV:

CLAVATA

CLE:

CLAVAT3 (CLV3)/ENDOSPERM SURROUNDING REGION (ESR)

FON:

FLORAL ORGAN NUMBER

FOS1:

FON2 SPARE1

CPM:

counts per million

References

  • Adamowski M, Friml J (2015) PIN-dependent auxin transport: action, regulation, and evolution. Plant Cell 27:20–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aida M, Beis D, Heidstra R, Willemsen V, Blilou I, Galinha C, Nussaume L, Noh YS, Amasino R, Scheres B (2004) The PLETHORA genes mediate patterning of the Arabidopsis root stem cell niche. Cell 119:109–120

    Article  CAS  PubMed  Google Scholar 

  • Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. http://www.bioinformaticsbabrahamacuk/projects/fastqc

  • Benjamins R, Scheres B (2008) Auxin: the loo** star in plant development. Annu Rev Plant Biol 59:443–465

    Article  CAS  PubMed  Google Scholar 

  • Bensmihen S (2015) Hormonal control of lateral root and nodule development in legumes. Plants 4:523–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briggs GC, Mouchel CF, Hardtke CS (2006) Characterization of the plant-specific BREVIS RADIX gene family reveals limited genetic redundancy despite high sequence conservation. Plant Physiol 140:1306–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brkljacic J, Grotewold E, Scholl R, Mockler T, Garvin DF, Vain P, Brutnell T, Sibout R, Bevan M, Budak H, Caicedo AL, Gao C, Gu Y, Hazen SP, Holt BF III, Hong SY, Jordan M, Manzaneda AJ, Mitchell-Olds T, Mochida K, LAJ M, Park CM, Sedbrook J, Watt M, Zheng SJ, Vogel JP (2011) Brachypodium as model for the grasses: today and the future. Plant Physiol 157:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Budak H, Hernandez P, Schulman A (2014) Analysis and exploitation of cereal genomes with the aid of Brachypodium. In: Tuberosa R, Graner A, Frison E (eds) Genomics of plant genetic resources. Springer, Dordrecht. https://doi.org/10.1007/1978-1094-1007-7572-1005_1024

    Google Scholar 

  • Charpentier M, Oldroyd G (2010) How close are we to nitrogen-fixing cereals? Curr Opin Plant Biol 13:556–564

    Article  CAS  PubMed  Google Scholar 

  • Christiansen-Weniger C (1998) Endophytic establishment of diazotrophic bacteria in auxin-induced tumors of cereal crops. Crit Rev Plant Sci 17:55–76

    Article  Google Scholar 

  • Davidson RM, Gowda M, Moghe G, Lin H, Vaillancourt B, Shiu SH, Jiang N, Robin Buell C (2012) Comparative transcriptomics of three Poaceae species reveals patterns of gene expression evolution. Plant J 71:492–502

    CAS  PubMed  Google Scholar 

  • Ding Y, Oldroyd G (2009) Positioning the nodule, the hormone dictum. Plant Signal Behav 4:89–93

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du Z, Zhou X, Ling Y, Zhang Z, Su Z (2010) agriGO: a GO analysis toolkit for the agricultural community. Nucleic Acids Res. https://doi.org/10.1093/nar/gkq1310

  • Franssen HJ, **ao TT, Kulikova O, Wan X, Bisseling T, Scheres B, Heidstra R (2015) Root developmental programs shape the Medicago truncatula nodule meristem. Development 142:2941–2950

    Article  CAS  PubMed  Google Scholar 

  • Geiser M, Murphy AS (2005) The ABC of auxin transport: the role of p-glycoproteins in plant development. FEBS Lett 580:1094–1102

    Article  Google Scholar 

  • Goodstein DM et al (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:1178–1186

    Article  Google Scholar 

  • Gopalaswamy G, Kannaiyan S, O'Callaghan KJ, Davey MR, Cocking EC (2000) The xylem of rice (Oryza sativa) is colonized by Azorhizobium caulinodans. Proc R Soc B Biol Sci 269:103–107

    Article  Google Scholar 

  • Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460

    Article  CAS  PubMed  Google Scholar 

  • Guilfoyle TJ, Hagen G (2012) Getting a grasp on domain III/IV responsible for Auxin Response Factor-IAA protein interactions. Plant Sci 190:82–88

    Article  CAS  PubMed  Google Scholar 

  • Haecker A, Gross-Hardt R, Geiges B, Sarkar A, Breuninger H, Herrmann M, Laux T (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131:657–668

    Article  CAS  PubMed  Google Scholar 

  • Heckmann AB, Lombardo F, Miwa H, Perry JA, Bunnewell S, Parniske M, Wang TL, Downie JA (2006) Lotus japonicus nodulation requires two GRAS domain regulators, one of which is functionally conserved in a non-legume. Plant Physiol 142:1739–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hiltenbrand R et al (2016) A developmental and molecular view of formation of auxin-induced nodule-like structures in land plants. Front Plant Sci 7:1692

    Article  PubMed  PubMed Central  Google Scholar 

  • Hirsch S, Oldroyd G (2009) GRAS-domain transcription factors that regulate plant development. Plant Signal Behav 4:698–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch AM, Bhuvaneswari TV, Torrey JG, Bisseling T (1989) Early nodulin genes are induced in alfalfa root outgrowths elicited by auxin transport inhibitors. Proc Natl Acad Sci 86:1244–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huan Q, Mao Z, Zhang J, Xu Y, Chong K (2013) Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. J Integr Plant Biol 55:696–709

    Article  CAS  PubMed  Google Scholar 

  • Huo X, Schnabel E, Hughes K, Frugoli J (2006) RNAi phenotypes and the localization of a protein::GUS fusion imply a role for Medicago truncatula PIN genes in nodulation. J Plant Growth Regul 25:156–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Initiative TIB (2010) Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature 463:763–768

    Article  Google Scholar 

  • Inukai Y, Sakamoto T, Ueguchi-Tanaka M, Shibata Y, Gomi K, Umemura I, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) Crown rootless1, which is essential for crown root formation in rice, is a target of an Auxin Response Factor in auxin signaling. Plant Cell 17:1387–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jansen L, Hollunder J, Roberts I, Forestan C, Fonteyne P, van Quickenborne C, Zhen RG, McKersie B, Parizot B, Beeckman T (2013) Comparative transcriptomics as a tool for the identification of root branching genes in maize. Plant Biotechnol J 11:1092–1102

    Article  CAS  PubMed  Google Scholar 

  • Kalo P et al (2005) Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators. Science 308:1786–1789

    Article  CAS  PubMed  Google Scholar 

  • Law CW, Chen Y, Shi W, Smyth GK (2014) Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biol 15:R29

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee HW, Cho C, Kim J (2015) Lateral Organ Boundaries Domain16 and 18 act downstream of the Auxin1 and Like-Auxin3 Auxin Influx Carriers to control lateral root development in Arabidopsis. Plant Physiol 168:1792–1806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Stoeckert CJ Jr, Roos DS (2003) OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li SB, **e ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (ARFs) in plants. Front Plant Sci 7:47

    PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2013) The subread aligner: fast, accurate and scalable read map** by seed-and-vote. Nucleic Acids Res 41:e108

    Article  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Smyth GK, Shi W (2014) featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30:923–930

    Article  CAS  PubMed  Google Scholar 

  • Licausi F, Ohme-Takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators of stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang S, Yu X, Yu J, He X, Zhang S, Shou H, Wu P (2005) ARL1, a LOB-domain protein required for adventitious root formation in rice. Plant J 43:47–56

    Article  PubMed  Google Scholar 

  • Mukherjee A, Ané JM (2011) Plant hormones and initiation of legume nodulation and arbuscular mycorrhization. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. John Wiley and Sons, Hoboken, pp 354–396

    Chapter  Google Scholar 

  • Murray JD, Karas BJ, Sato S, Tabata S, Amyot L, Szczyglowski K (2007) A cytokinin perception mutant colonized by rhizobium in the absence of nodule organogenesis. Science 315:101–104

    Article  CAS  PubMed  Google Scholar 

  • Mus F et al (2016) Symbiotic nitrogen fixation and challenges to extending it to non-legumes. Appl Environ Microbiol. https://doi.org/10.1128/AEM.01055-01016

  • Narula N, Deubel A, Gans W, Behl RK, Merbach WPSE (2006) Paranodules and colonization of wheat roots by phytohormone producing bacteria in soil. Plant Soil Environ 3:167–176

    Google Scholar 

  • Nuruzzaman M, Sharoni AM, Kikuchi S (2013) Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol 4:248

    Article  PubMed  PubMed Central  Google Scholar 

  • Okushima Y, Fukaki H, Onoda M, Theologis A, Tasaka M (2007) ARF7 and ARF19 regulate lateral root formation via direct activation of LBD/ASL genes in Arabidopsis. Plant Cell 19:118–130

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oldroyd GE, Downie JA (2008) Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol 59:519–546

    Article  CAS  PubMed  Google Scholar 

  • Ozdemir BS, Hernandez P, Filiz E, Budak H (2008) Brachypodium genomics. Int J Plant Genomics 2008:536104

    Article  PubMed  PubMed Central  Google Scholar 

  • Pislariu C, Dickstein R (2007) An IRE-like AGC kinase gene, MtIRE, has unique expression in the invasion zone of develo** root nodules in Medicago truncatula. Plant Physiol 144:682–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ridge RW, Ride KM, Rolfe BG (1993) Nodule-like structures induced on the roots of rice seedlings by addition of the synthetic auxin 2,4-dichlorophenoxyacetic acid. Aust J Plant Physiol 20:705–717

    Article  CAS  Google Scholar 

  • Rightmyer AP, Long SR (2011) Pseudonodule formation by wildtype and symbiotic mutant Medicago truncatula in response to auxin transport inhibitors. Mol Plant-Microbe Interact 24:1372–1384

    Article  CAS  PubMed  Google Scholar 

  • Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43(7):e47

    Article  PubMed  PubMed Central  Google Scholar 

  • Robert HS, Offringa R (2008) Regulation of auxin transport polarity by AGC kinases. Curr Opin Plant Biol 11:495–502

    Article  CAS  PubMed  Google Scholar 

  • Rogers C, Oldroyd G (2014) Synthetic biology approaches to engineering the nitrogen symbiosis in cereals. J Exp Bot. https://doi.org/10.1093/jxb/eru1098

  • Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett MJ, Downie JA, Swarup R, Oldroyd G, Murray JD (2017) MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter AUX1, is required for nodule organogenesis. Plant Physiol 174:326–338

    Article  CAS  PubMed  Google Scholar 

  • Ryu H, Cho H, Choi D, Hwang I (2012) Plant hormonal regulation of nitrogen-fixing nodule organogenesis. Mol Cells 34:117–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senthilkumar M, Madhaiyan M, Sundaram S, Kannaiyan S (2009) Intercellular colonization and growth promoting effects of Methylobacterium sp. with plant-growth regulators on rice (Oryza sativa L. Cv CO-43). Microbiol Res 164:92–104

    Article  CAS  PubMed  Google Scholar 

  • Sharma A, Sharma N, Bhalla P, Singh M (2017) Comparative and evolutionary analysis of grass pollen allergens using Brachypodium distachyon as a model system. PLoS One 12:e0169686

    Article  PubMed  PubMed Central  Google Scholar 

  • Sibout R, Proost S, Hansen BO, Vaid N, Giorgi FM, Ho-Yue-Kuang S, Legée F, Cézart L, Bouchabké-Coussa O, Soulhat C, Provart N, Pasha A, le Bris P, Roujol D, Hofte H, Jamet E, Lapierre C, Persson S, Mutwil M (2017) Expression atlas and comparative coexpression network analyses reveal important genes involved in the formation of lignified cell wall in Brachypodium distachyon. New Phytol 215:1009–1025

    Article  CAS  PubMed  Google Scholar 

  • Smit P, Raedts J, Portyanko V, Debelle F, Gough C, Bisseling T, Geurts R (2005) NSP1 of the GRAS protein family is essential for rhizobial Nod factorinduced transcription. Science 308:1789–1791

    Article  CAS  PubMed  Google Scholar 

  • Sriskandarajah S, Kennedy IR, Yu D, Tchan YT (1993) Effects of plant growth regulators on acetylene-reducing associations between Azospirillum brasilense and wheat. Plant Soil 153:165–178

    Article  CAS  Google Scholar 

  • Stahl Y, Simon R (2012) Peptides and receptors controlling root development. Philos Trans R Soc B 367:1453–1460

    Article  CAS  Google Scholar 

  • Suzaki T, Toriba T, Fujimoto M, Tsutsumi N, Kitano H, Hirano HY (2006) Conservation and diversification of meristem maintenance mechanism in Oryza sativa: function of the Floral Organ Number2 gene. Plant Cell Physiol 47:1591–1602

    Article  CAS  PubMed  Google Scholar 

  • Swarup R, Peret B (2012) AUX/LAX family of auxin influx carriers. Front Plant Sci 3. https://doi.org/10.3389/fpls.2012.00225

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  CAS  PubMed  Google Scholar 

  • Verrier PJ, Bird D, Burla B, Dassa E, Forestier C, Geisler M, Klein M, Kolukisaoglu Ü, Lee Y, Martinoia E, Murphy A, Rea PA, Samuels L, Schulz B, Spalding EP, Yazaki K, Theodoulou FL (2008) Plant ABC proteins—a unified nomenclature and updated inventory. Trends Plant Sci 13:151–159

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Estelle M (2014) Diversity and specificity: auxin perception and signaling through the TIR1/AFB pathway. Curr Opin Plant Biol 21:51–58

    Article  PubMed  Google Scholar 

  • Wang C, Yu H, Zhang Z, Yu L, Xu X, Hong Z, Luo L (2015) Phytosulfokine is involved in positive regulation of Lotus japonicus nodulation. Mol Plant Microbe Interact 28:847–855

    Article  CAS  PubMed  Google Scholar 

  • Watt M, Schneebeli K, Dong P, Wilson IW (2009) The shoot and root growth of Brachypodium and it’s potential as a model for wheat and other cereal crops. Funct Plant Biol 36:960–969

    Article  Google Scholar 

  • Wu C, Dickstein R, Cary AJ, Norris JH (1996) The auxin transport inhibitor N-(1-Napthyl)phthalamic acid elicits pseudonodules on nonnodulating mutants of white sweetclover. Plant Physiol 10:501–510

    Article  Google Scholar 

  • **e Q, Frugis G, Colgan D, Chua N (2000) Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev 14:3024–3036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Sawa S (2013) The roles of peptide hormones during plant root development. Curr Opin Plant Biol 16:56–61

    Article  CAS  PubMed  Google Scholar 

  • Zhao Y, Hu Y, Dai M, Huang L, Zhou DX (2009) The WUSCHEL-related homeobox gene WOX11 is required to activate shoot-borne crown root development in rice. Plant Cell 21:736–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Arkansas Center for Plant-Powered Production, as part of the National Science Foundation’s Research Infrastructure Improvement Award EPS-1003970; the Arkansas Science & Technology Authority basic research award (Project No. 15-B-07); the Arkansas INBRE program supported by a grant from the National Institute of General Medical Sciences (NIGMS), P20 GM103429 from the National Institutes of Health and a University Research Council award, University of Central Arkansas, AR. The authors would like to thank Dr. Rahul Mehta, University of Central Arkansas, for his help with the SEM images. The authors would also like to thank Ryan Hiltenbrand, Ashley Spurr, Hannah McCarthy, David Zimulinda, and Raj Singh for their assistance with the experiments.

Author information

Authors and Affiliations

Authors

Contributions

AM received grant support and contributed reagents/materials/analysis tools. AM conceived and designed the experiments. JT, AV, and HRK performed the experiments. JT, HRK, MJB, and AM analyzed the data. AM, JT, and MJB prepared the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Arijit Mukherjee.

Ethics declarations

Competing interests

The authors declare that they have no conflict of interest.

Electronic supplementary material

Supplementary Table 1

(XLSX 77 kb)

Supplementary Table 2

(XLSX 41 kb)

Supplementary Table 3

(XLSX 32 kb)

Supplementary Table 4

(XLSX 46 kb)

Supplementary Table 5

(XLSX 43 kb)

Supplementary Table 6

(XLSX 58 kb)

Supplementary Fig. 1

Lateral root numbers in Brachypodium roots during 2,4-D treatment. A) shows that lateral root numbers are decreased in Brachypodium roots upon 2,4-D treatment when compared to controls at 7dpt. Data represents the average of 3 experimental replications (n = 15–20) ± SE. The asterisk (*) shows a significant difference between the two conditions by t test (P < 0.001). B) shows that lateral root numbers are decreased in Brachypodium roots upon 2,4-D treatment when compared to controls at 14dpt. Data represents the average of 3 experimental replications (n = 15–20) ± SE. The asterisk (*) shows a significant difference between the two conditions by t test (P < 0.01). (JPEG 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomas, J., Bowman, M.J., Vega, A. et al. Comparative transcriptome analysis provides key insights into gene expression pattern during the formation of nodule-like structures in Brachypodium. Funct Integr Genomics 18, 315–326 (2018). https://doi.org/10.1007/s10142-018-0594-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-018-0594-z

Keywords

Navigation