Log in

Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ocean is full of low-frequency, irregular, and widely distributed wave energy, which is suitable as the energy source for maritime Internet of Things (IoTs). Utilizing triboelectric nanogenerators (TENGs) to harvest ocean wave energy and power sensors is proven to be an effective scheme. However, in random ocean waves, the irregular electrical energy output by general TENGs restricts the applications. At present, achieving regularized water wave energy harvesting relies on rather complex mechanical structure designs, which is not conducive to industrialization. In this work, we proposed a novel mechanical controlled TENG (MC-TENG) with a simple controlled switch to realize the regularization function. The structural parameters of the MC-TENG are optimized, and the optimal output voltage, output current, and transferred charge respectively reach 1684.2 V, 85.4 µA, and 389.9 nC, generating a peak power density of 38.46 W·m−3·Hz−1. Under real water wave environment, the output of the MC-TENG is regularized and keeps stable regardless of any wave conditions. Moreover, the potential applications of the MC-TENG are demonstrated in powering environmental temperature, humidity, and wind speed sensors. This work renders a simple approach to achieve effective regularized ocean wave energy harvesting, promoting the TENG industrialization toward practical application of maritime IoTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang, Z. L. On Maxwell’s displacement current for energy and sensors: The origin of nanogenerators. Mater. Today 2017, 20, 74–82.

    Article  Google Scholar 

  2. Ahmed, A.; Hassan, I.; Ibn-Mohammed, T.; Mostafa, H.; Reaney, I. M.; Koh, L. S. C.; Zu, J.; Wang, Z. L. Environmental life cycle assessment and techno-economic analysis of triboelectric nanogenerators. Energy Environ. Sci. 2017, 10, 653–671.

    Article  CAS  Google Scholar 

  3. Yan, Z. G.; Wang, L. L.; **a, Y. F.; Qiu, R. D.; Liu, W. Q.; Wu, M.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Zhu, M. M. et al. Flexible high-resolution triboelectric sensor array based on patterned laser-induced graphene for self-powered real-time tactile sensing. Adv. Funct. Mater. 2021, 31, 2100709.

    Article  CAS  Google Scholar 

  4. Wang, L. L.; Liu, W. Q.; Yan, Z. G.; Wang, F. J.; Wang, X. Stretchable and shape-adaptable triboelectric nanogenerator based on biocompatible liquid electrolyte for biomechanical energy harvesting and wearable human-machine interaction. Adv. Funct. Mater. 2020, 31, 2007221.

    Article  Google Scholar 

  5. Wang, Z. L. Nanogenerators, self-powered systems, blue energy, piezotronics and piezo-phototronics—A recall on the original thoughts for coining these fields. Nano Energy 2018, 54, 477–483.

    Article  CAS  Google Scholar 

  6. Li, Q.; Liu, Y.; Guo, S. H.; Zhou, H. S. Solar energy storage in the rechargeable batteries. Nano Today 2017, 16, 46–60.

    Article  CAS  Google Scholar 

  7. Gurung, A.; Qiao, Q. Q. Solar charging batteries: Advances, challenges, and opportunities. Joule 2018, 2, 1217–1230.

    Article  CAS  Google Scholar 

  8. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Plastic solar cells. Adv. Funct. Mater. 2001, 11, 15–26.

    Article  CAS  Google Scholar 

  9. Marom, R.; Amalraj, S. F.; Leifer, N.; Jacob, D.; Aurbach, D. A review of advanced and practical lithium battery materials. J. Mater. Chem. 2011, 21, 9938–9954.

    Article  CAS  Google Scholar 

  10. Zeng, X. Q.; Li, M.; El-Hady, D. A.; Alshitari, W.; Al-Bogami, A. S.; Lu, J.; Amine, K. Commercialization of lithium battery technologies for electric vehicles. Adv. Energy Mater. 2019, 9, 1900161.

    Article  Google Scholar 

  11. Zhao, T. C.; Xu, M. Y.; **ao, X.; Ma, Y.; Li, Z.; Wang, Z. L. Recent progress in blue energy harvesting for powering distributed sensors in ocean. Nano Energy 2021, 88, 106199.

    Article  CAS  Google Scholar 

  12. Hao, C. C.; He, J.; Zhang, Z. X.; Yuan, Y.; Chou, X. J.; Xue, C. Y. A pendulum hybrid generator for water wave energy harvesting and hydrophone-based wireless sensing. AIP Adv. 2020, 10, 125019.

    Article  Google Scholar 

  13. Huang, B.; Wang, P. Z.; Wang, L.; Yang, S.; Wu, D. Z. Recent advances in ocean wave energy harvesting by triboelectric nanogenerator: An overview. Nanotechnol 2020, 9, 716–735.

    Article  CAS  Google Scholar 

  14. Falnes, J.; Løvseth, J. Ocean wave energy. Energy Policy 1991, 19, 768–775.

    Article  Google Scholar 

  15. Aderinto, T.; Li, H. Ocean wave energy converters: Status and challenges. Energies 2018, 11, 1250.

    Article  Google Scholar 

  16. Jeon, S. B.; Kim, D.; Seol, M. L.; Park, S. J.; Choi, Y. K. 3-Dimensional broadband energy harvester based on internal hydrodynamic oscillation with a package structure. Nano Energy 2015, 17, 82–90

    Article  CAS  Google Scholar 

  17. Niu, S. M.; Wang, S. H.; Liu, Y.; Zhou, Y. S.; Lin, L.; Hu, Y. F.; Pradel, K. C.; Wang, Z. L. A theoretical study of grating structured triboelectric nanogenerators. Energy Environ. Sci. 2014, 7, 2339–2349.

    Article  CAS  Google Scholar 

  18. Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

    Article  CAS  Google Scholar 

  19. Choi, D.; Lee, S.; Park, S. M.; Cho, H.; Hwang, W.; Kim, D. S. Energy harvesting model of moving water inside a tubular system and its application of a stick-type compact triboelectric nanogenerator. Nano Res. 2015, 8, 2481–2491.

    Article  CAS  Google Scholar 

  20. Quan, Z. C.; Han, C. B.; Jiang, T.; Wang, Z. L. Robust thin films-based triboelectric nanogenerator arrays for harvesting bidirectional wind energy. Adv. Energy Mater. 2016, 6, 1501799.

    Article  Google Scholar 

  21. Seol, M. L.; Jeon, S. B.; Han, J. W.; Choi, Y. K. Ferrofluid-based triboelectric-electromagnetic hybrid generator for sensitive and sustainable vibration energy harvesting. Nano Energy 2017, 11, 233–238.

    Article  Google Scholar 

  22. Wang, X. F.; Niu, S. M.; Yin, Y. J.; Yi, F.; You, Z.; Wang, Z. L. Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv. Energy Mater. 2015, 5, 1501467.

    Article  Google Scholar 

  23. Seol, M. L.; Lee, S. H.; Han, J. W.; Kim, D.; Cho, G. H.; Choi, Y. K. Impact of contact pressure on output voltage of triboelectric nanogenerator based on deformation of interfacial structures. Nano Energy 2015, 17, 63–71.

    Article  CAS  Google Scholar 

  24. Mao, Y. C.; Geng, D. L.; Liang, E. J.; Wang, X. D. Single-electrode triboelectric nanogenerator for scavenging friction energy from rolling tires. Nano Energy 2015, 15, 227–234.

    Article  CAS  Google Scholar 

  25. Kim, T.; Chung, J.; Kim, D. Y.; Moon, J. H.; Lee, S.; Cho, M.; Lee, S. H.; Lee, S. Design and optimization of rotating triboelectric nanogenerator by water electrification and inertia. Nano Energy 2016, 27, 340–351.

    Article  CAS  Google Scholar 

  26. Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACS Nano 2013, 7, 9533–9557.

    Article  CAS  PubMed  Google Scholar 

  27. Lang, S. B. Pyroelectricity: From ancient curiosity to modern imaging tool. Phys. Today 2005, 58, 31–36.

    Article  CAS  Google Scholar 

  28. An, J.; Wang, Z. M.; Jiang, T.; Liang, X.; Wang, Z. L. Whirling-folded triboelectric nanogenerator with high average power for water wave energy harvesting. Adv. Funct. Mater. 2019, 29, 1904867.

    Article  Google Scholar 

  29. Zhang, C. G.; He, L. X.; Zhou, L. L.; Yang, O.; Yuan, W.; Wei, X. L.; Liu, Y. B.; Lu, L.; Wang, J.; Wang, Z. L. Active resonance triboelectric nanogenerator for harvesting omnidirectional water-wave energy. Joule 2021, 5, 1613–1623.

    Article  Google Scholar 

  30. Pang, H.; Feng, Y. W.; An, J.; Chen, P. F.; Han, J. J.; Jiang, T.; Wang, Z. L. Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv. Funct. Mater. 2021, 31, 2106398.

    Article  CAS  Google Scholar 

  31. Jiang, T.; Pang, H.; An, J.; Lu, P. J.; Feng, Y. W.; Liang, X.; Zhong, W.; Wang, Z. L. Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv. Energy Mater. 2020, 12, 2000064.

    Article  Google Scholar 

  32. Cao, B.; Wang, P. H.; Rui, P. S.; Wei, X. X.; Wang, Z. X.; Yang, Y. W.; Tu, X. B.; Chen, C.; Wang, Z. Z.; Yang, Z. Q. et al. Broadband and output-controllable triboelectric nanogenerator enabled by coupling swing-rotation switching mechanism with potential energy storage/release strategy for low-frequency mechanical energy harvesting. Adv. Energy Mater. 2022, 12, 2270194

    Article  Google Scholar 

  33. Lu, P. J.; Pang, H.; Ren, J.; Feng, Y. W.; An, J.; Liang, X.; Jiang, T.; Wang, Z. L. Swing-structured triboelectric-electromagnetic hybridized nanogenerator for breeze wind energy harvesting. Adv. Mater. Technol. 2021, 6, 2100496.

    Article  CAS  Google Scholar 

  34. Feng, Y. W.; Liang, X.; An, J.; Jiang, T.; Wang, Z. L. Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 2021, 81, 105625.

    Article  CAS  Google Scholar 

  35. Wang, H. Y.; Zhu, Q. Y.; Ding, Z. Y.; Li, Z. L.; Zheng, H. W.; Fu, J. J.; Diao, C. L.; Zhang, X. N.; Tian, J. J.; Zi, Y. L. A fully-packaged ship-shaped hybrid nanogenerator for blue energy harvesting toward seawater self-desalination and self-powered positioning. Nano Energy 2019, 57, 616–624.

    Article  CAS  Google Scholar 

  36. Chandrasekhar, A.; Vivekananthan, V.; Kim, S. J. A fully packed spheroidal hybrid generator for water wave energy harvesting and self-powered position tracking. Nano Energy 2020, 69, 104439.

    Article  CAS  Google Scholar 

  37. Zhang, C. G.; Yuan, W.; Zhang, B. F.; Yang, O.; Liu, Y. B.; He, L. X.; Wang, J.; Wang, Z. L. High space efficiency hybrid nanogenerators for effective water wave energy harvesting. Adv. Funct. Mater. 2022, 32, 2111775.

    Article  CAS  Google Scholar 

  38. Gao, Q.; Xu, Y. H.; Yu, X.; **g, Z. X.; Cheng, T. H.; Wang, Z. L. Gyroscope-structured triboelectric nanogenerator for harvesting multidirectional ocean wave energy. ACS Nano 2022, 16, 6781–6788.

    Article  CAS  PubMed  Google Scholar 

  39. Zhang, X. M.; Yang, Q. X.; Ji, P. Y.; Wu, Z. F.; Li, Q. Y.; Yang, H. K.; Li, X. C.; Zheng, G. C.; **, Y.; Wang, Z. L. Modeling of liquid-solid hydrodynamic water wave energy harvesting system based on triboelectric nanogenerator. Nano Energy 2022, 99, 107362.

    Article  CAS  Google Scholar 

  40. Liang, X.; Liu, S. J.; Ren, Z. W.; Jiang, T.; Wang, Z. L. Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv. Funct. Mater. 2022, 32, 2205313.

    Article  CAS  Google Scholar 

  41. Wang, X. X.; Gao, Q.; Zhu, M. K.; Wang, J. L.; Zhu, J. Y.; Zhao, H. W.; Wang, Z. L, Cheng, T. H. Bioinspired butterfly wings triboelectric nanogenerator with drag amplification for multidirectional underwater-wave energy harvesting. Appl. Energy 2022, 323, 119648.

    Article  Google Scholar 

  42. Yin, M. F.; Lu, X. H.; Qiao, G. D.; Xu, Y. H.; Wang, Y. Q.; Cheng, T. H.; Wang, Z. L. Mechanical regulation triboelectric nanogenerator with controllable output performance for random energy harvesting. Adv. Energy Mater. 2020, 10, 2000627.

    Article  CAS  Google Scholar 

  43. Meng, L. X.; Yang, Y. F.; Liu, S. M.; Wang, S.; Zhang, T.; Guo, X. L. Energy storage triboelectric nanogenerator based on ratchet mechanism for random ocean energy harvesting. ACS Omega 2023, 8, 1362–1368.

    Article  CAS  PubMed  Google Scholar 

  44. He, G. F.; Luo, Y. J.; Zhai, Y.; Wu, Y.; You, J.; Lu, R.; Zeng, S. K.; Wang, Z. L. Regulating random mechanical motion using the principle of auto-winding mechanical watch for driving TENG with constant AC output—An approach for efficient usage of high entropy energy. Nano Energy 2021, 87, 106195.

    Article  CAS  Google Scholar 

  45. Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Feng, Y. W.; Jiang, T.; Liang, X.; An, J.; Wang, Z. L. Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl. Phys. Rev. 2020, 7, 021401.

    Article  CAS  Google Scholar 

  47. **, F. B.; Pang, Y. K.; Li, W.; Jiang, T.; Zhang, L. M.; Guo, T.; Liu, G. X.; Zhang, C.; Wang, Z. L. Universal power management strategy for triboelectric nanogenerator. Nano Energy 2017, 37, 168–176.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Key Research and Development Project from Minister of Science and Technology (Nos. 2021YFA1201604 and 2021YFA1201601), Bei**g Nova Program (No. 20220484036), Innovation Project of Ocean Science and Technology (No. 22-3-3-hygg-18-hy), and Youth Innovation Promotion Association, CAS.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhong Lin Wang, Tao Jiang or Zhanyong Hong.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Liang, X., Kan, J. et al. Triboelectric nanogenerator integrated with a simple controlled switch for regularized water wave energy harvesting. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6679-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6679-1

Keywords

Navigation