High Efficient and High Durability Triboelectric Nanogenerators for Blue Energy

  • Reference work entry
  • First Online:
Handbook of Triboelectric Nanogenerators
  • 855 Accesses

Abstract

Oceans contain abundant and clean renewable energy, and the development and utilization of ocean energy will be a fundamental approach to solve the energy problem in the post-fossil energy era. Current ocean energy conversion mainly relies on electromagnetic generators, but their physical principle makes them inefficient for directly converting low-frequency and disordered ocean energy. By contrast, triboelectric nanogenerators (TENGs) exhibit significant advantages in low-frequency and high-entropy energy harvesting, which provide a subversive technical path for the efficient development of ocean energy. Since the idea of using TENG networks to harvest large-scale blue energy was proposed in 2014, great progress has been made in the structure and performance optimization of blue energy harvesting devices, and now the principle verification has been completed. However, there is still room for further improvement in existing blue energy conversion technologies, and continuous explorations are required in terms of device efficiency, durability, and power management. This chapter provides a comprehensive review about the original idea of blue energy, technology advantages, strategies for improving the device efficiency and durability, and power management on the outputs of TENGs and network and discusses the perspectives and challenges for blue energy harvesting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 855.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 1,069.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Chen J, Yang J, Li Z, Fan X, Zi Y, **g Q et al (2015) Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy. ACS Nano 9:3324–3331

    Article  CAS  Google Scholar 

  • Chen P, An J, Shu S, Cheng R, Nie J, Jiang T et al (2021a) Super-durable, low-wear, and high-performance fur-brush triboelectric nanogenerator for wind and water energy harvesting for smart agriculture. Adv Energy Mater 11:2003066

    Article  CAS  Google Scholar 

  • Chen P, An J, Cheng R, Shu S, Berbille A, Jiang T et al (2021b) Rationally segmented triboelectric nanogenerator with a constant direct-current output and low crest factor. Energy Environ Sci 14:4523–4532

    Article  Google Scholar 

  • Chen P, Luo Y, Cheng R, Shu S, An J, Berbille A et al (2022) Achieving high power density and durability of sliding mode triboelectric nanogenerator by double charge supplement strategy. Adv Energy Mater 12:2201813

    Article  CAS  Google Scholar 

  • Ellabban O, Abu-Rub H, Blaabjerg F (2014) Renewable energy resources: current status, future prospects and their enabling technology. Renew Sust Energ Rev 39:748–764

    Article  Google Scholar 

  • Falnes J (2007) A review of wave-energy extraction. Mar Struct 20:185–201

    Article  Google Scholar 

  • Fan F-R, Tian Z-Q, Wang ZL (2012) Flexible triboelectric generator. Nano Energ 1:328–334

    Article  CAS  Google Scholar 

  • Fang C, Tong T, Bu T, Cao Y, Xu S, Qi Y et al (2020) Overview of power management for triboelectric nanogenerators. Adv Intell Syst 2:2070020

    Article  Google Scholar 

  • Feng Y, Jiang T, Liang X, An J, Wang ZL (2020) Cylindrical triboelectric nanogenerator based on swing structure for efficient harvesting of ultra-low-frequency water wave energy. Appl Phys Rev 7:021401

    Article  CAS  Google Scholar 

  • Feng Y, Liang X, An J, Jiang T, Wang ZL (2021) Soft-contact cylindrical triboelectric-electromagnetic hybrid nanogenerator based on swing structure for ultra-low frequency water wave energy harvesting. Nano Energy 81:105625

    Article  CAS  Google Scholar 

  • Henderson R (2006) Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter. Renew Energy 31:271–283

    Article  Google Scholar 

  • Jiang T, Chen X, Han CB, Tang W, Wang ZL (2015) Theoretical study of rotary freestanding triboelectric nanogenerators. Adv Funct Mater 25:2928–2938

    Article  CAS  Google Scholar 

  • Jiang T, Yao Y, Xu L, Zhang L, **ao T, Wang ZL (2017) Spring-assisted triboelectric nanogenerator for efficiently harvesting water wave energy. Nano Energy 31:560–567

    Article  CAS  Google Scholar 

  • Jiang T, Pang H, An J, Lu P, Feng Y, Liang X et al (2020) Robust swing-structured triboelectric nanogenerator for efficient blue energy harvesting. Adv Energy Mater 10:2000046

    Article  Google Scholar 

  • Jouanne AV (2006) Harvesting the waves. Mech Eng Mag 128:24–27

    Article  Google Scholar 

  • Khaligh A, Onar OC (2009) Energy harvesting: solar, wind, and ocean energy conversion systems. CRC Press, Boca Raton

    Google Scholar 

  • Liang X, Jiang T, Liu G, **ao T, Xu L, Li W et al (2019) Triboelectric nanogenerator networks integrated with power management module for water wave energy harvesting. Adv Funct Mater 29:1807241

    Article  CAS  Google Scholar 

  • Liang X, Jiang T, Liu G, Feng Y, Zhang C, Wang ZL (2020a) Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ Sci 13:277–285

    Article  Google Scholar 

  • Liang X, Jiang T, Feng Y, Lu P, An J, Wang ZL (2020b) Triboelectric nanogenerator network integrated with charge excitation circuit for effective water wave energy harvesting. Adv Energy Mater 10:2002123

    Article  CAS  Google Scholar 

  • Liang X, Liu Z, Feng Y, Han J, Li L, An J et al (2021) Spherical triboelectric nanogenerator based on spring-assisted swing structure for effective water wave energy harvesting. Nano Energy 83:105836

    Article  CAS  Google Scholar 

  • Liang X, Liu S, Ren Z, Jiang T, Wang ZL (2022) Self-powered intelligent buoy based on triboelectric nanogenerator for water level alarming. Adv Funct Mater 32:2205313

    Article  CAS  Google Scholar 

  • Lin L, **e Y, Niu S, Wang S, Yang P-K, Wang ZL (2015) Robust triboelectric nanogenerator based on rolling electrification and electrostatic induction at an instantaneous energy conversion efficiency of ~55%. ACS Nano 9:922–930

    Article  CAS  Google Scholar 

  • Lin Z, Zhang B, Guo H, Wu Z, Zou H, Yang J et al (2019) Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 64:103908

    Article  CAS  Google Scholar 

  • Lin Z, Zhang B, **e Y, Wu Z, Yang J, Wang ZL (2021) Elastic-connection and soft-contact triboelectric nanogenerator with superior durability and efficiency. Adv Funct Mater 31:2105237

    Article  CAS  Google Scholar 

  • Pang H, Feng Y, An J, Chen P, Han J, Jiang T et al (2021) Segmented swing-structured fur-based triboelectric nanogenerator for harvesting blue energy toward marine environmental applications. Adv Funct Mater 31:2106398

    Article  CAS  Google Scholar 

  • Wang ZL (2014) Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss 176:447–458

    Article  CAS  Google Scholar 

  • Wang ZL (2017a) New wave power. Nature 542:159–160

    Article  Google Scholar 

  • Wang ZL (2017b) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20:74–82

    Article  Google Scholar 

  • Wang ZL (2019) Entropy theory of distributed energy for internet of things. Nano Energy 58:669–672

    Article  CAS  Google Scholar 

  • Wang X, Niu S, Yin Y, Yi F, You Z, Wang ZL (2015) Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy. Adv Energy Mater 5:1501467

    Article  Google Scholar 

  • Wang ZL, Jiang T, Xu L (2017) Toward the blue energy dream by triboelectric nanogenerator networks. Nano Energy 39:9–23

    Article  Google Scholar 

  • Wu C, Liu R, Wang J, Zi Y, Lin L, Wang ZL (2017) A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy. Nano Energy 32:287–293

    Article  CAS  Google Scholar 

  • ** Y, Guo H, Zi Y, Li X, Wang J, Deng J et al (2017a) Multifunctional TENG for blue energy scavenging and self-powered wind-speed sensor. Adv Energy Mater 7:1602397

    Article  Google Scholar 

  • ** F, Pang Y, Li W, Jiang T, Zhang L, Guo T et al (2017b) Universal power management strategy for triboelectric nanogenerator. Nano Energy 37:168–176

    Article  CAS  Google Scholar 

  • **ao TX, Jiang T, Zhu JX, Liang X, Xu L, Shao JJ et al (2018a) Silicone-based triboelectric nanogenerator for water wave energy harvesting. ACS Appl Mater Interfaces 10:3616–3623

    Article  CAS  Google Scholar 

  • **ao TX, Liang X, Jiang T, Xu L, Shao JJ, Nie JH et al (2018b) Spherical triboelectric nanogenerators based on spring-assisted multilayered structure for efficient water wave energy harvesting. Adv Funct Mater 28:1802634

    Article  Google Scholar 

  • Xu L, Jiang T, Lin P, Shao JJ, He C, Zhong W et al (2018) Coupled triboelectric nanogenerator networks for efficient water wave energy harvesting. ACS Nano 12:1849–1858

    Article  CAS  Google Scholar 

  • Yang Y, Zhang HL, Chen J, **g QS, Zhou YS, Wen XN et al (2013) Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system. ACS Nano 7:7342–7351

    Article  CAS  Google Scholar 

  • Zi YL, Guo H, Wen Z, Yeh M-H, Hu C, Wang ZL (2016) Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator. ACS Nano 10:4797–4805

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Jiang or Zhong Lin Wang .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jiang, T., Wang, Z.L. (2023). High Efficient and High Durability Triboelectric Nanogenerators for Blue Energy. In: Wang, Z.L., Yang, Y., Zhai, J., Wang, J. (eds) Handbook of Triboelectric Nanogenerators. Springer, Cham. https://doi.org/10.1007/978-3-031-28111-2_39

Download citation

Publish with us

Policies and ethics

Navigation