Log in

Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Ultra-small size metal nanoparticles (u-MNPs) have broad applications in the fields of catalysis, biomedicine and energy conversion. Herein, by means of a ligand-controlled synthesis strategy, series of Ru-based NPs with high dispersity and ultra-small size (marked as u-Ru/C), or sparse and aggregated state (marked as a-Ru/C) anchored on the surface of hollow porous carbon shells are prepared. Systematical in-situ thermogravimetry-mass spectrometry-Fourier transform infrared spectra tests suggest that the different ligands in these Ru-based precursors can regulate the nucleation, growth and fixation of metal sites during the pyrolysis process, thus contributing to Ru NPs with various size and dispersity. As a result, when applied to hydrogen evolution reaction, the u-Ru-1/C catalyst displays a low Tafel slope of 26 mV·dec−1, overpotential of 31 mV (at 10 mA·cm−2) and a large exchange current density of 1.7 mA·cm−2 in 1.0 M KOH, significantly better than that of the a-Ru-2/C, hollow carbon and even commercial 20% Pt/C. This is mainly because that the u-Ru-1/C sample owns both smaller particle size, more electrochemical active sites, higher intrinsic activity and optimized surface H adsorption ability than that of the a-Ru-2/C counterpart. Such ligand-modulated growth strategy is not only applicable to Ru, but also can be extended to other similar metals, offering a step forward in the design and synthesis of highly dispersed u-MNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Brazil)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen, P. C.; Liu, Y.; Du, J. S.; Meckes, B.; Dravid, V. P.; Mirkin, C. A. Chain-end functionalized polymers for the controlled synthesis of sub-2 nm particles. J. Am. Chem. Soc. 2020, 142, 7350–7355.

    Article  CAS  Google Scholar 

  2. Li, R.; Linares, N.; Sutjianto, J. G.; Chawla, A.; Garcia-Martinez, J.; Rimer, J. D. Ultrasmall zeolite l crystals prepared from highly interdispersed alkali-silicate precursors. Angew. Chem., Int. Ed. 2018, 57, 11283–11288.

    Article  CAS  Google Scholar 

  3. Li, X.; Lu, Z. L.; Wang, T. Self-assembly of semiconductor nanoparticles toward emergent behaviors on fluorescence. Nano Res. 2021, 14, 1233–1243.

    Article  CAS  Google Scholar 

  4. Huang, Y.; Song, X. N.; Deng, J.; Zha, C.; Huang, W. J.; Wu, Y. L.; Li, Y. G. Ultra-dispersed molybdenum phosphide and phosphosulfide nanoparticles on hierarchical carbonaceous scaffolds for hydrogen evolution electrocatalysis. Appl. Catal. B Environ. 2019, 245, 656–661.

    Article  CAS  Google Scholar 

  5. Xu, S. L.; Shen, S. C.; Wei, Z. Y.; Zhao, S.; Zuo, L. J.; Chen, M. X.; Wang, L.; Ding, Y. W.; Chen, P.; Chu, S. Q. et al. A library of carbon-supported ultrasmall bimetallic nanoparticles. Nano Res. 2020, 13, 2735–2740.

    Article  CAS  Google Scholar 

  6. Sun, T. T.; Li, Y. L.; Cui, T. T.; Xu, L. B.; Wang, Y. G.; Chen, W. X.; Zhang, P. P.; Zheng, T. Y.; Fu, X. Z.; Zhang, S. L. et al. Engineering of coordination environment and multiscale structure in single-site copper catalyst for superior electrocatalytic oxygen reduction. Nano Lett. 2020, 20, 6206–6214.

    Article  CAS  Google Scholar 

  7. Cao, S. W.; Tao, F.; Tang, Y.; Li, Y. T.; Yu, J. G. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 2016, 45, 4747–4765.

    Article  CAS  Google Scholar 

  8. Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

    Article  CAS  Google Scholar 

  9. Wang, Q.; Ming, M.; Niu, S.; Zhang, Y.; Fan, G. Y.; Hu, J. S. Scalable solid-state synthesis of highly dispersed uncapped metal (Rh, Ru, Ir) nanoparticles for efficient hydrogen evolution. Adv. Energy Mater. 2018, 8, 1801698.

    Article  Google Scholar 

  10. Yasuda, S.; Osuga, R.; Kunitake, Y.; Kato, K.; Fukuoka, A.; Kobayashi, H.; Gao, M.; Hasegawa, J. Y.; Manabe, R.; Shima, H. et al. Zeolite-supported ultra-small nickel as catalyst for selective oxidation of methane to syngas. Commun. Chem. 2020, 3, 129.

    Article  CAS  Google Scholar 

  11. Yang, F.; Ye, J. Y.; Yuan, Q.; Yang, X. T.; **e, Z. X.; Zhao, F. L.; Zhou, Z. Y.; Gu, L.; Wang, X. Ultrasmall Pd-Cu-Pt trimetallic twin icosahedrons boost the electrocatalytic performance of glycerol oxidation at the operating temperature of fuel cells. Adv. Funct. Mater. 2020, 30, 1908235.

    Article  CAS  Google Scholar 

  12. Liu, J. L.; Shi, W. X.; Wang, X. Cluster-nuclei coassembled into two-dimensional hybrid CuO-PMA sub-1 nm nanosheets. J. Am. Chem. Soc. 2019, 141, 18754–18758.

    Article  CAS  Google Scholar 

  13. Yang, Z. K.; Wang, Y.; Zhu, M. Z.; Li, Z. J.; Chen, W. X.; Wei, W. C.; Yuan, T. W.; Qu, Y. T.; Xu, Q.; Zhao, C. M. et al. Boosting oxygen reduction catalysis with Fe-N4 sites decorated porous carbons toward fuel cells. ACS Catal. 2019, 9, 2158–2163.

    Article  CAS  Google Scholar 

  14. Xu, Y. T.; **ao, X. F.; Ye, Z. M.; Zhao, S. L.; Shen, R. A.; He, C. T.; Zhang, J. P.; Li, Y. D.; Chen, X. M. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2017, 139, 5285–5288.

    Article  CAS  Google Scholar 

  15. Tao, R.; Shen, X. R.; Hu, Y. M.; Kang, K.; Zheng, Y. Q.; Luo, S. C.; Yang, S. Y.; Li, W. L.; Lu, S. L.; **, Y. H. et al. Phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles. Small 2020, 16, 1906005.

    Article  CAS  Google Scholar 

  16. Li, M. Y.; Wang, C. L.; Di, Z. H.; Li, H.; Zhang, J. F.; Xue, W. T.; Zhao, M. P.; Zhang, K.; Zhao, Y. L.; Li, L. L. Engineering multifunctional DNA hybrid nanospheres through coordination-driven self-assembly. Angew. Chem., Int. Ed. 2019, 58, 1350–1354.

    Article  CAS  Google Scholar 

  17. Guo, H. L.; Feng, Q. C.; Xu, K. W.; Xu, J. S.; Zhu, J. X.; Zhang, C.; Liu, T. X. Self-templated conversion of metallogel into heterostructured tmp@carbon quasiaerogels boosting bifunctional electrocatalysis. Adv. Funct. Mater. 2019, 29, 1903660.

    Article  Google Scholar 

  18. Liu, Y.; Liu, S. L.; Wang, Y.; Zhang, Q. H.; Gu, L.; Zhao, S. C.; Xu, D. D.; Li, Y. F.; Bao, J. C.; Dai, Z. H. Ru modulation effects in the synthesis of unique rod-like Ni@Ni2P-Ru heterostructures and their remarkable electrocatalytic hydrogen evolution performance. J. Am. Chem. Soc. 2018, 140, 2731–2734.

    Article  CAS  Google Scholar 

  19. Zhang, C.; Shi, Y. M.; Yu, Y. F.; Du, Y. H.; Zhang, B. Engineering sulfur defects, atomic thickness, and porous structures into cobalt sulfide nanosheets for efficient electrocatalytic alkaline hydrogen evolution. ACS Catal. 2018, 8, 8077.

    Article  CAS  Google Scholar 

  20. Tang, C. J.; Liu, Y. N.; Xu, C.; Zhu, J. X.; Wei, X. J.; Zhou, L.; He, L.; Yang, W.; Mai, L. Q. Ultrafine nickel-nanoparticle-enabled SiO2 hierarchical hollow spheres for high-performance lithium storage. Adv. Funct. Mater. 2018, 28, 1704561.

    Article  Google Scholar 

  21. Mei, J.; Ayoko, G. A.; Hu, C. F.; Sun, Z. Q. Thermal reduction of sulfur-containing MAX phase for MXene production. Chem. Eng. J. 2020, 395, 125111

    Article  CAS  Google Scholar 

  22. Madarász, J.; Bombicz, P.; Okuya, M.; Kaneko, S.; Pokol, G. Online coupled TG-FTIR and TG-/DTA-MS analyses of the evolved gases from dichloro(thiourea) tin(II). Solid State Ionics 2004, 172, 577–581.

    Article  Google Scholar 

  23. Li, G. Y.; Ma, F. F.; Cao, Q. J. W.; Zheng, Z.; DeLaney, K.; Liu R.; Li, L. J. Nanosecond photochemically promoted click chemistry for enhanced neuropeptide visualization and rapid protein labeling. Nat. Commun. 2019, 10, 4697.

    Article  Google Scholar 

  24. Niu, S. W.; Cai, J. Y.; Wang, G. M. Two-dimensional MoS2 for hydrogen evolution reaction catalysis: The electronic structure regulation. Nano Res. 2021, 14, 1985–2002.

    Article  CAS  Google Scholar 

  25. Zhao, D.; Sun, K. A.; Cheong, W. C.; Zheng, L. R.; Zhang, C.; Liu, S. J.; Cao, X.; Wu, K. L.; Pan, Y.; Zhuang, Z. W. et al. Synergistically interactive pyridinic-N-MoP sites: Identified active centers for enhanced hydrogen evolution in alkaline solution. Angew. Chem., Int. Ed. 2020, 59, 8982–8990.

    Article  CAS  Google Scholar 

  26. Ju, Q. J.; Ma, R. G.; Pei, Y.; Guo, B. B.; Li, Z. C.; Liu, Q.; Thomas, T.; Yang, M. H.; Hutchings, G. J.; Wang, J. C. Ruthenium triazine composite: A good match for increasing hydrogen evolution activity through contact electrification. Adv. Energy Mater. 2020, 10, 2000067.

    Article  CAS  Google Scholar 

  27. Lu, L. Z.; Liu, Y.; Fan, J. Y.; Wang, L.; Lin, Y.; Xu, D. D.; Dai, Z. H.; Han, M. Engineering bimetal Cu, Co sites on 3D N-doped porous carbon nanosheets for enhanced oxygen reduction electrocatalysis. Chem. Commun. 2020, 56, 10010–10013.

    Article  CAS  Google Scholar 

  28. Li, F.; Han, G. F.; Noh, H. J.; Jeon, J. P.; Ahmad, I.; Chen, S. S.; Yang, C.; Bu, Y. F.; Fu, Z. P.; Lu, Y. L. et al. Balancing hydrogen adsorption/desorption by orbital modulation for efficient hydrogen evolution catalysis. Nat. Commun. 2019, 10, 4060.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22075147 and 21533012), the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Liu.

Electronic supplementary material

12274_2021_3645_MOESM1_ESM.pdf

Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che, Z., Lu, X., Cai, B. et al. Ligand-controlled synthesis of high density and ultra-small Ru nanoparticles with excellent electrocatalytic hydrogen evolution performance. Nano Res. 15, 1269–1275 (2022). https://doi.org/10.1007/s12274-021-3645-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-021-3645-z

Keywords

Navigation