Log in

Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Silver nanocubes enriched with 100 facets have been extensively used for surface-enhanced Raman scattering. Herein, we report a new water-phase synthesis method for well-defined Ag nanocubes with tunable sizes via a two-step procedure at room temperature. First, irregularly shaped Ag nanoparticles (INPs) were prepared by reducing silver ammonia solution using ethylal. Second, the agglomerated INPs were selectively etched with HNO3 and Cl to yield 100 facet-rich mesoporous Ag nanocubes. The mechanism of Ag-nanocube formation and growth was investigated in detail by elucidating the involved chemical reactions and physical changes at each step during the synthesis. The addition of Cl anions was responsible for facilitating Ag nanoparticle growth by removing surface-adsorbed AgCl+ species, thereby eliminating inter-particle repulsive forces. This agglomeration was found crucial for the subsequent selective oxidation of Ag nanoparticles because the protective agent used, polyvinylpyrrolidone (PVP), was the most effective one for adsorption on the surfaces of Ag nanoparticles of size greater than approximately 50 nm. Importantly, mesopores were found inside the Ag nanocubes; this can be attributed to the unavoidable imperfect packing during the agglomeration of INPs. The newly prepared Ag nanocubes were further used to enhance the Raman signal of rhodamine 6G, which is capable of reducing the detection limitation to 10−16 mol·L−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee, S. Y.; Hung, L.; Lang, G. S.; Cornett, J. E.; Mayergoyz, I. D.; Rabin, O. Dispersion in the SERS enhancement with silver nanocube dimers. ACS Nano 2010, 4, 5763–5772.

    Article  Google Scholar 

  2. Park, H. G.; Joo, J. H.; Kim, H. G.; Lee, J. S. Shape-dependent reversible assembly properties of polyvalent DNA-silver nanocube conjugates. J. Phys. Chem. C 2012, 116, 2278–2284.

    Article  Google Scholar 

  3. Mahmoud, M. A.; Chamanzar, M.; Adibi, A.; El-Sayed, M. A. Effect of the dielectric constant of the surrounding medium and the substrate on the surface plasmon resonances and sensitivity factors of highly symmetric systems: Silver nanocubes. J. Am. Chem. Soc. 2012, 134, 6434–6342.

    Article  Google Scholar 

  4. Ahamad, N.; Bottomley, A.; Ianoul, A. Optimizing refractive index sensitivity of supported silver nanocube monolayers. J. Phys. Chem. C 2012, 116, 185–192.

    Article  Google Scholar 

  5. Haes, A. J.; Zou, S.; Schatz, G. C.; Van Duyne, R. P. A nanocscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles. J. Phys. Chem. B 2004, 108, 109–116.

    Article  Google Scholar 

  6. Whitney, A. V.; Elam, J. W.; Zou, S.; Zinovev, A. V.; Stair, P. C.; Schatz, G. C.; Van Duyne, R. P. Locailized surface plasmon resonance nanosensor: A high-resolution distancedependence study using atomic layer deposition. J. Phys. Chem. B 2005, 109, 20522–20528.

    Article  Google Scholar 

  7. Jain, P. K.; Huang, W.; El-Sayed, M. A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: A plasmon ruler equation. Nano Lett. 2007, 7, 2080–2088.

    Article  Google Scholar 

  8. Sun, Y. G.; **a, Y. N. Shape-controlled of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  Google Scholar 

  9. Tao, A.; Sinsermsuksakul, P.; Yang, P. D. Tunable plasmonic lattices of silver nanocrystals. Nat. Nanotechnol. 2007, 2, 435–440.

    Article  Google Scholar 

  10. Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A. Surfaceenhanced Raman scattering enhancement by aggregated silver nanocube monolayers assembled by the Langmuir-Blodgett technique at different surface pressures. J. Phys. Chem. C 2009, 113, 5493–5501.

    Article  Google Scholar 

  11. Ling, X. Y.; Yan, R.; Lo, S.; Hoang, D. T.; Liu, C.; Fardy, M. A.; Khan, S. B.; Asiri, A. M.; Bawaked, S. M.; Yang, P. Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 2014, 7, 132–143.

    Article  Google Scholar 

  12. Wang, Y.; Lu, N.; Wang, W.; Liu, L.; Feng, L.; Zeng, Z.; Li, H.; Xu, W.; Wu, Z.; Hu, W.; Lu, Y.; Chi, L. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2013, 6, 159–166.

    Article  Google Scholar 

  13. Mahmoud, M. A.; El-Sayed, M. A. Comparative study of the assemblies and the resulting plasmon fields of Langmuir-Blodgett assembled monolayers of silver nanocubes and gold nanocages. J. Phys. Chem. C 2008, 112, 14618–14625.

    Article  Google Scholar 

  14. Wen, X. L.; Yi, M. F.; Zhang, D. G.; Wang, P.; Lu, Y. H.; Ming, H. Tunable plasmonic coupling between silver nanocubes and silver nano-hole arrays. Nanotechnology 2011, 22, 085203–085209.

  15. Galush, W. J.; Shelby, S. A.; Mulvihill, M. J.; Tao, A.; Yang, P. D.; Groves, J. T. A nanocube plasmonic sensor for molecular binding on membrane surfaces. Nano Lett. 2009, 9, 2077–2082.

    Article  Google Scholar 

  16. Wu, H. J.; Henzie, J.; Lin, W. C.; Rhodes, C.; Li, Z.; Sartorel, E.; Thorner, J.; Yang, P. D.; Groves, J. T. Membrane-protein binding measured with solution-phase plasmonic nanocube sensors. Nat. Methods 2012, 9, 1189–1191.

    Article  Google Scholar 

  17. Mahmoud, M. A.; Poncheri, A. J.; Phillips, R. L.; El-Sayed, M. A. Plasmonic field enhancement of the exciton-exciton annihilation process in a poly(p-phenyleneethylene) fluorescent polymer by Ag nanocubes. J. Am. Chem. Soc. 2010, 132, 2633–2641.

    Article  Google Scholar 

  18. Yi, M. F.; Zhang, D. G.; Wen, X. L.; Fu, Q.; Wang, P.; Lu, Y. H.; Ming, H. Fluorescence enhancement caused by plasmonics coupling between silver nano-cubes and silver film. Plasmonics 2011, 6, 213–217.

    Article  Google Scholar 

  19. Han, S. B.; Song, Y. J.; Lee, J. M.; Kim, J. Y.; Park, K. W. Platinum nanotube catalysts for methanol and ethanol electrooxidation. Electrochem. Commun. 2008, 10, 1044–1047.

    Article  Google Scholar 

  20. Wang, C.; Daimon, H.; Lee, Y.; Kim, J.; Sun, S. H. Synthesis of monodisperse Pt nanocubes and their enhanced catalysis for oxygen reduction. J. Am. Chem. Soc. 2007, 129, 6974–6975.

    Article  Google Scholar 

  21. Lee, C. L.; Tsai, Y. L.; Chen, C. W. Specific and mass activity of silver nanocube and nanoparticle-based catalysts for electroless copper deposition. Electrochim. Acta 2013, 104, 185–190.

    Article  Google Scholar 

  22. Xu, R.; Wang, D. S.; Zhang, J. T.; Li, Y. D. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene. Chem. Asian J. 2006, 1, 888–893.

    Article  Google Scholar 

  23. Skrabalak, S. E.; Au, L.; Li, X. D.; **a, Y. N. Facile synthesis of Ag nanocubes and Au nanocages. Nat. Protoc. 2007, 2, 2182–2190.

    Article  Google Scholar 

  24. Lu, X. M.; Au, L.; McLellan, J.; Li, Z. Y.; Marquez, M.; **a, Y. N. Fabrication of cubic nanocages and nanoframes by dealloying Au/Ag alloy nanoboxes with aqueous etchant based on Fe(NO3)3 or NH4OH. Nano Lett. 2007, 7, 1764–1769.

    Article  Google Scholar 

  25. **, H. M.; Chen, Y. Z.; Guo, H. Z.; Wang, Z. W.; Zeng, D. Q.; Wang, L. S.; Peng, D. L. A facile solution approach for the preparation of Ag@Ni core-shell nanocubes. Mater. Lett. 2014, 116, 239–242.

    Article  Google Scholar 

  26. **a, Y. N.; **a, X. H.; Wang, Y.; **e, S. F. Shape-controlled synthesis of metal nanocrystals. MRS Bull. 2013, 38, 335–344.

    Article  Google Scholar 

  27. Zhang, Q.; Li, W. Y.; Moran, C.; Zeng, J.; Chen, J. Y.; Wen, L. P.; **a, Y. N. Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30–200 nm and comparison of their optical properties. J. Am. Chem. Soc. 2010, 132, 11372–11378.

    Article  Google Scholar 

  28. Galush, W. J.; Shelby, S. A.; Mulvihill, M. J.; Tao, A.; Yang, P.; Groves, J. T. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of singlecrystal, truncated cubes and tetrahedrons. Nano Lett. 2009, 9, 2077–2082.

    Article  Google Scholar 

  29. Zhang, Q.; Cobley, C.; Au, L.; McKiernan, M.; Schwartz, A.; Wen, L. P.; Chen, J. Y.; **a, Y. N. Production of Ag nanocubes on a scale of 0.1 g per batch by protecting the NaHS-mediated polyol synthesis with argon. ACS Appl. Mater. Inter. 2009, 1, 2044–2048.

    Article  Google Scholar 

  30. Rycenga, M.; McLellan, J. M.; **a, Y. N. Controlling the assembly of silver nanocubes through selective functionalization of their faces. Adv. Mater. 2008, 20, 2416–2420.

    Article  Google Scholar 

  31. Yu, D. B.; Yam, V. W. Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 2004, 126, 13200–13201.

    Google Scholar 

  32. Chang, Y. M.; Lu, I. T.; Chen, C. Y.; Hsieh, Y. C.; Wu, P. W. High-yield water-based synthesis of truncated silver nanocubes. J. Alloy. Compd. 2014, 586, 507–511.

    Article  Google Scholar 

  33. Leopold, N.; Lendl, B. A new method for fast preparation of highly surface-enhanced Raman scattering (SERS) active silver colloids at room temperature by reduction of silver nitrate with hydroxylamine hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727.

    Article  Google Scholar 

  34. Mahapatra, S. K.; Bogle, K. A.; Dhole, S. D.; Bhoraskar, V. N. Synthesis of gold and silver nanoparticles by electron irradiation at 5–15 keV energy. Nanotechnology 2007, 18, 135602.

    Article  Google Scholar 

  35. Maity, D.; Kanti, B. M.; Bhowmick, B.; Sarkar, J.; Saha, S.; Acharya, K.; Chakraborty, M.; Chattopadhyay, D. In situ synthesis, characterization, and antimicrobial activity of silver nanoparticles using water soluble polymer. J. Appl. Polym. Sci. 2011, 122, 2189–2196.

    Article  Google Scholar 

  36. Zhang, F.; Wu, X.; Chen, Y.; Lin, H. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. Fiber. Polym. 2009, 10, 496–501.

    Article  Google Scholar 

  37. Yin, Y. D.; Li, Z. Y.; Zhong, Z. Y.; Gates, B.; **a, Y. N.; Venkateswaran, S. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. J. Mater. Chem. 2002, 12, 522–527.

    Article  Google Scholar 

  38. Im, S. H.; Lee, Y. T.; Wiley, B.; **a, Y. Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. Int. Ed. 2005, 44, 2154–2157.

    Article  Google Scholar 

  39. **a, X. H.; Zeng, J.; Zhang, Q.; Moran, C. H.; **a, Y. N. Recent developments in shapes-controlled synthesis of silver nanocrystals. J. Phys. Chem. C 2012, 116, 21647–21656.

    Article  Google Scholar 

  40. Chen, A. H.; **e, H. X.; Wang, H. Q.; Li, H. Y.; Li, X. Y. Fabrication of Ag/polypyrrole coaxial nanocables through common ions adsorption effect. Synthetic Met. 2006, 156, 346–350.

    Article  Google Scholar 

  41. Ai, L. H.; Zhang, C. H.; Jiang, J. Hierarchical porous AgCl@Ag hollow architectures: Self-templating synthesis and highly enhanced visible light photocatalytic activity. Appl. Catal. B-Environ. 2013, 142, 744–751.

    Article  Google Scholar 

  42. Sing, K. S. W. D.; Everett, H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniew, T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619.

    Article  Google Scholar 

  43. Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J. Surfaceenhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticles shape dependence. Anal. Chem. 2005, 77, 3261–3266.

    Article  Google Scholar 

  44. Huang, Z. L.; Meng, G. W.; Huang, Q.; Chen, B.; Zhou, F.; Hu, X. Y.; Qian, Y. W.; Tang, H. B.; Han, F. M.; Chu, Z. Q. Highly effective and reproducible surface-enhanced Raman scattering substrates based on Ag pyramidal arrays. Nano Res. 2014, 7, 1177–1187.

    Article  Google Scholar 

  45. Qin, L. D.; Zou, S. L.; Xue, C.; Atkinson, A.; Schatz, G. C.; Mirkin, C. A. Designing, fabrication, and imaging Raman hot spots. Proc. Natl. Acad. Sci. USA 2006, 103, 13300–13303.

    Article  Google Scholar 

  46. Pedano, M. L.; Li, S. Z.; Schatz, G. C.; Minkin, C. A. Periodic electric field enhancement along gold rods with nanogaps. Angew. Chem. Int. Ed. 2010, 49, 78–82.

    Article  Google Scholar 

  47. Li, S. Z.; Pedano, M. L.; Chang, S. H.; Minkin, C. A.; Schatz, G. C. Gap structure effects on surface-enhanced Raman scattering intensities for gold gapped rods. Nano Lett. 2010, 10, 1722–1727.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guofeng Cui or Xudong Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Yang, M., Ke, X. et al. Mesoporous Ag nanocubes synthesized via selectively oxidative etching at room temperature for surface-enhanced Raman spectroscopy. Nano Res. 8, 2351–2362 (2015). https://doi.org/10.1007/s12274-015-0745-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0745-7

Keywords

Navigation