Log in

Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

Nanostructure with an interior nanogap has received much attention in surface-enhanced Raman scattering (SERS). However, controllable synthesis of nanostructure with ultrasmall nanogap and innovative morphology still remains a challenge. Herein, we present a facile seed-mediated route to integrate uniform nanogap in novel Ag nano coix seeds and locate Raman molecules in the nanogap at room temperature. After 20-nm Ag nanoparticles (NPs) modified by Raman ligand 2-naphthalenethiol and coated by polymer shells as cores were obtained, outside Ag shells were formed by in situ reduction on the polymer surface. The SERS properties of these resulting Ag nano coix seeds were systematically explored. More importantly, the novel SERS active substrate exhibited ultrahigh homogeneity, reproducibility, stability, and even a reliable quantitative SERS analysis mediated by internal standard molecules.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banaei N, Foley A, Houghton JM, Sun YB, Kim B (2017) Multiplex detection of pancreatic cancer biomarkers using a SERS-based immunoassay. Nanotechnology 28:455101

    Article  Google Scholar 

  • Cardinal MF, Ende EV, Hackler RA, McAnally MO, Stair PC, Schatz GC, Duyne RPV (2017) Expanding applications of SERS through versatile nanomaterials engineering. Chem Soc Rev 46:3886–3903

    Article  CAS  Google Scholar 

  • Chamuah N, Chetia L, Zahan N, Dutta S, Ahmed GA, Nath P (2017) A naturally occurring diatom frustule as a SERS substrate for the detection and quantification of chemicals. J Phys D Appl Phys 50:175103

    Article  Google Scholar 

  • Chen G, Wang Y, Yang MX, Xu J, Goh SJ, Pan M, Chen HY (2010) Measuring ensemble-averaged surface-enhanced Raman scattering in the hotspots of colloidal nanoparticle dimers and trimers. J Am Chem Soc 132:3644–3645

    Article  CAS  Google Scholar 

  • David C, Guillot N, Shen H, Toury T, de la Chapelle ML (2011) SERS detection of biomolecules using lithographied nanoparticles towards a reproducible SERS biosensor. Nanotechnology 21:475501

    Article  Google Scholar 

  • Dmitruk NL, Malynych SZ, Moroz IE, Kurlyak VY (2010) Optical efficiency of Ag and Au nanoparticles. Semicond Phys Quantum Electron Optoelectron 13:369–373

    CAS  Google Scholar 

  • Feng YH, Wang Y, Wang H, Chen T, Tay YY, Yao L, Yan QY, Li SZ, Chen HY (2012) Engineering “hot” nanoparticles for surface-enhanced Raman scattering by embedding reporter molecules in metal layers. Small 8:246–251

    Article  CAS  Google Scholar 

  • Feng YH, Wang YW, Song XH, **ng SX, Chen HY (2017) Depletion sphere: explaining the number of Ag islands on Au nanoparticles. Chem Sci 8:430–436

    Article  CAS  Google Scholar 

  • Gang L, Anderson BG, van Grondelle J, van Santen RA (2003) Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts. Appl Catal B Environ 40:101–110

    Article  CAS  Google Scholar 

  • Gillibert R, Triba MN, de la Chapelle ML (2018) Surface enhanced Raman scattering sensor for highly sensitive and selective detection of ochratoxin A. Analyst 143:339–345

    Article  CAS  Google Scholar 

  • Jensen TR, Malinsky MD, Haynes CL, Duyne RPV (2000) Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles. J Phys Chem B 104:10549–10556

    Article  CAS  Google Scholar 

  • Jiang T, Wang XL, Zhou J, Chen D, Zhao ZQ (2016) Hydrothermal synthesis of Ag@MSiO2@Ag three core–shell nanoparticles and their sensitive and stable SERS properties. Nanoscale 8:4908–4914

    Article  CAS  Google Scholar 

  • Jiang T, Wang XL, Tang SW, Zhou J, Gu CJ, Tang J (2017a) Seed-mediated synthesis and SERS performance of graphene oxide-wrapped Ag nanomushroom. Sci Rep 7:9795

    Article  Google Scholar 

  • Jiang T, Wang XL, Tang J, Zhou J, Gu CJ, Tang SW (2017b) The seeded-synthesis of core–shell Au dumbbells with inbuilt Raman molecules and their SERS performance. Anal Methods 9:4394–4399

    Article  CAS  Google Scholar 

  • Jiang T, Wang XL, Zhou J (2017c) The synthesis of four–layer gold–silver–polymer–silver core–shell nanomushroom with inbuilt Raman molecule for surface–enhanced Raman scattering. Appl Surf Sci 426:965–971

    Article  CAS  Google Scholar 

  • Jiang T, Wang XL, Tang J, Tang SW (2018a) Seed-mediated synthesis of floriated Ag nanoplates as surface enhanced Raman scattering substrate for in situ molecular detection. Mater Res Bull 97:201–206

    Article  CAS  Google Scholar 

  • Jiang T, Wang XL, Zhou J, ** H (2018b) The construction of silver aggregate with inbuilt Raman molecule and gold nanowire forest in SERS-based immunoassay for cancer biomarker detection. Sensors Actuators B Chem 258:105–114

    Article  CAS  Google Scholar 

  • Kang LL, Xu P, Zhang B, Tsai H, Han XJ, Wang HL (2013) Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy. Chem Commun 49:3389–3391

    Article  CAS  Google Scholar 

  • Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107:668–677

    Article  CAS  Google Scholar 

  • Kumar-Krishnan S, Estevez-Gonz’alez M, P’erez R, Esparza R, Meyyappan M (2017) A general seed-mediated approach to the synthesis of AgM (M = Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv 7:27170–27176

    Article  CAS  Google Scholar 

  • Li JP, Zhou J, Jiang T, Wang BB, Gu M, Petti L, Mormile P (2014) Controllable synthesis and SERS characteristics of hollow sea-urchin gold nanoparticles. Phys Chem Chem Phys 16:25601–25608

    Article  CAS  Google Scholar 

  • Li P, Yan XN, Zhou F, Tang XH, Yang LB, Liu JH (2017) A capillary force-induced Au nanoparticle–Ag nanowire single hot spot platform for SERS analysis. J Mater Chem C 5:3229–3237

    Article  CAS  Google Scholar 

  • Lim DK, Jeon KS, Hwang JH, Kim H, Kwon S, Suh YD, Nam JM (2011) Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nanotechnol 6:452–460

    Article  CAS  Google Scholar 

  • Lin KQ, Yi J, Zhong JH, Hu S, Liu BJ, Liu JY, Zong C, Lei ZC, Wang X, Aizpurua J, Esteban R, Ren B (2017) Plasmonic photoluminescence for recovering native chemical information from surface-enhanced Raman scattering. Nat Commun 8:14891

    Article  CAS  Google Scholar 

  • Liu HP, Liu TZ, Zhang L, Han L, Gao CB, Yin YD (2015) Etching-free epitaxial growth of gold on silver nanostructures for high chemical stability and plasmonic activity. Adv Funct Mater 25:5435–5443

    Article  CAS  Google Scholar 

  • Long R, Zhou S, Wiley BJ, **ong YJ (2014) Oxidative etching for controlled synthesis of metal nanocrystals: atomic addition and subtraction. Chem Soc Rev 43:6288–6310

    Article  CAS  Google Scholar 

  • Mai YY, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  Google Scholar 

  • Puebla RAA, Santos DSJD, Aroca RF (2004) Surface–enhanced Raman scattering for ultrasensitive chemical analysis of 1 and 2–naphthalenethiols. Analyst 129:1251–1256

    Article  Google Scholar 

  • Schider G, Gotschy W, Leitner A, Aussenegg FR (1999) Squeezing the optical near-field zone by plasmon coupling of metallic nanoparticles. Phys Rev Lett 82:2590–2593

    Article  Google Scholar 

  • Shen W, Lin X, Jiang CY, Li CY, Lin HX, Huang JT, Wang S, Liu GK, Yan XM, Zhong QL, Ren B (2015) Reliable quantitative SERS analysis facilitated by core–shell nanoparticles with embedded internal standards. Angew Chem Int Ed 54:7308–7312

    Article  CAS  Google Scholar 

  • Wiley B, Herricks T, Sun YG, **a YN (2004) Polyol synthesis of silver nanoparticles: use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett 4:1733–1739

    Article  CAS  Google Scholar 

  • Willets KA, Duyne RPV (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297

    Article  CAS  Google Scholar 

  • Yan XN, Li P, Yang LB, Liu JH (2016) Time–dependent SERS spectra monitoring the dynamic adsorption behavior of bipyridine isomerides combined with bianalyte method. Analyst 141:5189–5194

    Article  CAS  Google Scholar 

  • Yang MX, Chen T, Lau WS, Wang Y, Tang QH, Yang YH, Chen HY (2009) Development of polymer–encapsulated metal nanoparticles as surface–enhanced Raman scattering probes. Small 5:198–202

    Article  CAS  Google Scholar 

  • Yang SK, Dai XM, Stogin BB, Wong TS (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc Natl Acad Sci 113:268–273

    Article  CAS  Google Scholar 

  • Yao QF, Yuan X, Fung V, Yu Y, Leong DT, Jiang DE, **e JP (2017) Understanding seed-mediated growth of gold nanoclusters at molecular level. Nat Commun 8:927

    Article  Google Scholar 

  • Zhang C, Lia CH, Yu J, Jiang SZ, Xu SC, Yang C, Liu YJ, Gao XG, Liu AH, Man BY (2018) SERS activated platform with three-dimensional hot spots and tunable nanometer gap. Sensors Actuators B Chem 258:163–171

    Article  CAS  Google Scholar 

  • Zhao Y, Li XY, Wang MS, Zhang LC, Chu BH, Yang CL, Liu Y, Zhou DF, Lu YL (2017) Constructing sub–10–nm gaps in graphene–metal hybrid system for advanced surface–enhanced Raman scattering detection. J Alloys Compd 720:139–146

    Article  CAS  Google Scholar 

  • Zou J, Song W, **e W, Huang B, Yang H, Luo Z (2018) A simple way to synthesize large-scale Cu2O/Ag nanoflowers for ultrasensitive surface-enhanced Raman scattering detection. Nanotechnology 29:115703

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant no. LY19F050002), the Natural Science Foundation of Ningbo (Grant No. 2018A610316), the Applied Basic Research Project of Shanxi Province (Grant No. 201701D221096), and K.C. Wong Magna Fund in Ningbo University, China.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongmei Liu or Tao Jiang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1336 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, Y., Liu, H. & Jiang, T. Reliable quantitative SERS analysis mediated by Ag nano coix seeds with internal standard molecule. J Nanopart Res 21, 107 (2019). https://doi.org/10.1007/s11051-019-4532-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-019-4532-3

Keywords

Navigation