Log in

Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A multifunctional, dual-drug carrier platform was successfully constructed. Core-shell structured NaGdF4:Yb/Er@NaGdF4:Yb@mSiO2-polyethylene glycol (abbreviated as UCNPS) nanoparticles loaded with the antitumor drug, doxorubicin (DOX) were incorporated into poly(ɛ-caprolactone) (PCL) and gelatin loaded with antiphlogistic drug, indomethacin (MC) to form nanofibrous fabrics (labeled as MC/UCNPS/DOX) via electrospinning process. The resultant multifunctional spinning pieces can be surgically implanted directly at the tumor site of mice as an orthotopic chemotherapy by controlled-release DOX from mesoporous silicon dioxide (SiO2) and upconversion fluorescence/magnetic resonance dual-model imaging through NaGdF4:Yb/Er@NaGdF4:Yb embedded in MC/UCNPS/DOX in vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cha, C. H.; Saif, M. W.; Yamane, B. H.; Weber, S. M. Hepatocellular carcinoma: Current management. Curr. Prob. Surg. 2010, 47, 10–67.

    Article  Google Scholar 

  2. Toshkovaa, R.; Manolovab, N.; Gardevaa, E.; Ignatovab, M.; Yossifovaa, L.; Rashkovb, I.; Alexandrov, M. Antitumor actinity of quaternized chitosan-based electrospun implants against graffi myeloid tumor. Int. J. Pharm. 2010, 400, 221–233.

    Article  Google Scholar 

  3. Yang, J. Stimuli-responsive drug delivery systems. Adv. Drug Deliver. Rev. 2012, 64, 965–966.

    Article  Google Scholar 

  4. Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991–1003.

    Article  Google Scholar 

  5. Zhang, Y.; Qian, J.; Wang, D.; Wang, Y. L.; He, S. L. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy. Angew. Chem. Int. Ed. 2013, 52, 1148–1151.

    Article  Google Scholar 

  6. Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in cancer imagingand therapy. Adv. Mater. 2011, 23, H18–H40.

    Article  Google Scholar 

  7. Yu, M. H.; Jambhrunkar, S.; Thorn, P.; Chen, J.; Gu, W.; Yu, C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44-overexpressing cancer cells. Nanoscale 2013, 5, 178–183.

    Article  Google Scholar 

  8. Hoffman, A. S. The origins and evolution of “controlled” drug delivery systems. J. Controlled Release 2008, 132, 153–163.

    Article  Google Scholar 

  9. Reneker, D. H.; Chun, I. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology 1996, 7, 216–223.

    Article  Google Scholar 

  10. Charernsriwilaiwat, N.; Opanasopit, P.; Rojanarata, T.; Ngawhirunpat, T. Lysozyme-loaded, electrospun chitosan-based nanofiber mats for wound healing. Int. J. Pharm. 2012, 427, 379–384.

    Article  Google Scholar 

  11. Hou, Z. Y.; Li, X. J.; Li, C. X.; Dai, Y. L.; Ma, P. A.; Zhang, X.; Kang, X. J.; Cheng, Z. Y.; Lin, J. Electrospun up conversion composite fibers as dual drugs delivery system with individual release properties. Langmuir 2013, 29, 9473–9482.

    Article  Google Scholar 

  12. Hou, Z. Y.; Li, C. X.; Ma, P. A.; Cheng, Z. Y.; Li, X. J.; Zhang, X. Dai, Y. L.; Yang, D. M.; Lian, H. Z.; Lin, J. Up-conversion luminescent and porous NaYF4:Yb3+, Er3+@SiO2nanocompositefibers for anti-cancer drug delivery and cell imaging. Adv. Funct. Mater. 2012, 22, 2713–2722.

    Article  Google Scholar 

  13. Kenawy, E. R.; Bowlin, G. L.; Mansfield, K.; Layman, J.; Simpson, D. G.; Sanders, E. H.; Wnek, G. E. Release of tetracycline hydrochloride from electrospun poly(ethylene-co-vinylacetate), poly(lactic acid), and a blend. J. Control. Release 2002, 81, 57–64.

    Article  Google Scholar 

  14. Luu, Y. K.; Kim, K.; Hsiao, B. S.; Chu, B.; Hadjiargyrou, M. Development of a nanostructured DNA deliveryscaffold via electrospinning of PLGA and PLA-PEG block copolymers. J. Control. Release 2003, 89, 341–353.

    Article  Google Scholar 

  15. Huang, C. B.; Soenen, S. J.; van Gulck, E.; Vanham, G.; Rejman, J.; van Calenbergh, S.; Vervaet, C.; Coenye, T.; Verstraelen, H.; Temmerman, M. Electrospun cellulose acetate phthalate fibers for semen induced anti-HIV vaginal drug delivery. Biomaterials 2012, 33, 962–969.

    Article  Google Scholar 

  16. Wang, P.; Wang, Y. P.; Tong, L. M. Functionalized polymer nanofibers: A versatile platform for manipulating light at the nanoscale. Light: Sci. Appl. 2013, 2, e102.

    Article  Google Scholar 

  17. Kuo, T.; Lai, W. Y.; Li, C. H.; Wun, Y.; Chang, H. C.; Chen, J.; Yang, P.; Chen, C. AS1411 aptamer-conjugated Gd2O3:Eu nanoparticles for target-specific computed tomography/magnetic resonance/fluorescence molecular imaging. Nano Res. 2014, 7, 658–669.

    Article  Google Scholar 

  18. Ju, Q.; Tu, D. T.; Liu, Y. S.; Li, R. F.; Zhu, H. M.; Chen, J. C.; Chen, Z.; Huang, M. D.; Chen, X. Y. Amine-functionalized lanthanide-doped KGdF4nanocrystals as potential optical/magnetic multimodal bioprobes. J. Am. Chem. Soc. 2012, 134, 1323–1330.

    Article  Google Scholar 

  19. Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

    Article  Google Scholar 

  20. Fang, S.; Wang, C.; **ang, J.; Cheng, L.; Song, X. J.; Xu, L. G.; Peng, R.; Liu, Z. Aptamer-conjugated upconversion nanoprobes assistedby magnetic separation for effective isolation andsensitive detection of circulating tumor cells. Nano Res. 2014, 7, 1327–1336.

    Article  Google Scholar 

  21. Tu, D. T.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6306–6310.

    Article  Google Scholar 

  22. Tu, D. T.; Zheng, W.; Liu, Y. S.; Zhu, H. M.; Chen, X. Y. Luminescent biodetectionbased on lanthanide-doped inorganic nanoprobes. Coord. Chem. Rev. 2014, 273, 13–29.

    Article  Google Scholar 

  23. Liu, J. N.; Bu, J. W.; Bu, W.; Zhang, S. J.; Pan, L. M.; Fan, W. P. Real-time in vivo quantitative monitoring of drug release by dual-mode magnetic resonance and upconverted luminescence imaging. Angew. Chem. Int. Ed. 2014, 53, 4551–4555.

    Article  Google Scholar 

  24. Zhou, J.; Liu, Z.; Li, F. Y. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev. 2012, 41, 1323–1349.

    Article  Google Scholar 

  25. Louie, A. Y. Multimodality imaging probes: Design and challenges. Chem. Rev. 2010, 110, 3146–3195.

    Article  Google Scholar 

  26. Wang, C.; Cheng, L.; Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics 2013, 3, 317–330.

    Article  Google Scholar 

  27. Shan, G. B.; Weissleder, R.; Hilderbrand, S. A. Upconverting organic dye doped core-shellnano-composites for dual-modality NIR imaging and photo-thermal therapy. Theranostics 2013, 3, 267–274.

    Article  Google Scholar 

  28. Li, X. M.; Zhao, D. Y.; Zhang, F. Multifunctional upconversion-magnetic hybrid nanostructured materials: Synthesis and bioapplications. Theranostics 2013, 3, 292–305.

    Article  Google Scholar 

  29. Debasu, M. L.; Ananias, D.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Rocha, J.; Carlos, L. D. All-in-one optical heater-thermometer nanoplatform operative from 300 to 2,000 K based on Er3+ emission and blackbody radiation. Adv. Mater. 2013, 25, 4868–4874.

    Article  Google Scholar 

  30. Li, C. X.; Hou, Z. Y.; Dai, Y. L.; Yang, D. M.; Cheng, Z. Y.; Ma, P. A. A facile fabrication of upconversionluminescent and mesoporouscore-shell structured β-NaYF4:Yb3+, Er3+@mSiO2nanocompositespheres for anti-cancer drug delivery and cell imaging. Biomater. Sci. 2013, 1, 213–223.

    Article  Google Scholar 

  31. Li, C. X.; Yang, D. M.; Ma, P. A.; Chen, Y. Y.; Wu, Y.; Hou, Z. Y. Multifunctional upconversion mesoporous silica nanostructures for dual modal imaging and in vivo drug delivery. Small 2013, 9, 4150–4159.

    Article  Google Scholar 

  32. Zhang, X.; Yang, P. P.; Dai, Y. L.; Ma, P. A.; Li, X. J.; Cheng, Z. Y. Multifunctional up-converting nanocomposites with smart polymer brushes gated mesopores for cell imaging and thermo/pH dual-responsive drug controlled release. Adv. Funct. Mater. 2013, 23, 4067–4078.

    Article  Google Scholar 

  33. Janes, K. A.; Fresneau, M. P.; Marazuela, A.; Fabra, A.; Alonso, M. J. Chitosan nanoparticles as delivery systems for doxorubicin. J. Control. Release 2001, 73, 255–267.

    Article  Google Scholar 

  34. Chen, Y. Y.; Ma, P. A.; Yang, D. M.; Wu, Y.; Dai, Y. L.; Li, C. X. Multifunctional core-shell structured nanocarriers for synchronous tumor diagnosis and treatment in vivo. Chem. Asian J. 2014, 9, 506–513.

    Article  Google Scholar 

  35. Luo, X. M.; **e, C. Y.; Wang, H.; Liu, C.; Yan, S.; Li, X. Antitumor activities of emulsion electrospun fibers with core loading of hydroxycamptothecin via intratumoral implantation. Int. J. Pharm. 2012, 425, 19–28.

    Article  Google Scholar 

  36. Cheng, L.; Yang, K.; Shao, M. W.; Lu, X.; Liu, Z. In vivo pharmacokinetics, long-term biodistribution and toxicology study of functionalized upconversion nanoparticles in mice. Nanomedicine 2011, 6, 1327–1340.

    Article  Google Scholar 

  37. **ong, L.; Yang, T.; Yang, Y.; Xu, C.; Li, F. Long-term in vivo biodistributionimaging and toxicity of polyacrylicacid-coated upconversionnanophosphors. Biomaterials 2010, 31, 7078–7085.

    Article  Google Scholar 

  38. Wang, G. F.; Peng, Q.; Li, Y. D. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Accounts. Chem. Res. 2011, 44, 322–332.

    Article  Google Scholar 

  39. Meek, M. F.; Coert, J. H. US food and drug administration/conformiteurope-approved absorbable nerve conduits for clinical repair of peripheral and cranial nerves. Ann. Plast. Surg. 2008, 60, 466–472.

    Article  Google Scholar 

  40. Kai, D.; Prabhakaran, M. P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23, 095705.

    Article  Google Scholar 

  41. Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F.; Wagner, W. R. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybrid scaffold. Biomaterials 2011, 32, 3387–3394.

    Article  Google Scholar 

  42. Chong, E. J.; Phan, T. T.; Lim, I. J.; Zhang, Y. Z.; Bay, B. H.; Ramakrishna, S. Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution. Acta. Biomater. 2007, 3, 321–330.

    Article  Google Scholar 

  43. Ghasemi-Mobarakeh, L.; Prabhakaran, M. P.; Morshed, M.; Ramakrishna, S. Electrospun poly(epsilon-caprolactone)/gelatin nanofibrous scaffolds for nerve tissue engineering. Biomaterials 2008, 29, 4532–4539.

    Article  Google Scholar 

  44. Gautam, S.; Chou, C. F.; Dinda, A. K.; Potdar, P. D.; Mishra, N. C. Fabrication and characterization of PCL/Gelatin/Chitosan ternarynanofibrouscomposite scaffold for tissue engineering applications. J. Mater. Sci. 2014, 49, 1076–1089.

    Article  Google Scholar 

  45. Tang, S. H.; Huang, X. Q.; Chen, X. L.; Zheng, N. F. Hollow mesoporouszirconia nanocapsules for drug delivery. Adv. Funct. Mater. 2010, 20, 2442–2447.

    Article  Google Scholar 

  46. Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W. Facile preparation of multifunctional upconversion nanoprobes for multimodal imaging and dual-targeted photothermal therapy. Angew. Chem. Int. Ed. 2011, 50, 7385–7390.

    Article  Google Scholar 

  47. Chen, Y.; Chen, H. R.; Shi, J. L. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporoussilica nanoparticles. Adv. Mater. 2013, 25, 3144–3176.

    Article  Google Scholar 

  48. Kai, D.; Prabhakaran, M. P.; Stahl, B.; Eblenkamp, M.; Wintermantel, E.; Ramakrishna, S. Mechanical properties and in vitro behavior of nanofiber-hydrogel composites for tissue engineering applications. Nanotechnology 2012, 23, 095705.

    Article  Google Scholar 

  49. Hong, Y.; Huber, A.; Takanari, K.; Amoroso, N. J.; Hashizume, R.; Badylak, S. F. Mechanical properties and in vivo behavior of a biodegradable synthetic polymer microfiber-extracellular matrix hydrogel biohybridscaffold. Biomaterials 2011, 32, 3387–3394.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunxia Li or Jun Lin.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Liu, S., Hou, Z. et al. Multifunctional electrospinning composite fibers for orthotopic cancer treatment in vivo . Nano Res. 8, 1917–1931 (2015). https://doi.org/10.1007/s12274-014-0701-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-014-0701-y

Keywords

Navigation