Log in

Salivary Intraductal Carcinoma Arising within Intraparotid Lymph Node: A Report of 4 Cases with Identification of a Novel STRN-ALK Fusion

  • Original Paper
  • Published:
Head and Neck Pathology Aims and scope Submit manuscript

Abstract

Intraductal carcinoma (IDC) is a rare salivary gland tumor that is considered analogous to ductal carcinoma in-situ of the breast, demonstrating a complex neoplastic epithelial proliferation surrounded by a continuous layer of presumed non-neoplastic myoepithelial cells. It is subcategorized into intercalated duct, apocrine, and hybrid subtypes based on morphologic and immunohistochemical features, with frequent NCOA4-RET and TRIM27-RET fusions, respectively, seen in intercalated duct and hybrid tumors. However, as an expanding clinicopathologic spectrum of IDC has been documented, controversy has emerged as to whether this tumor type is best defined by its intraductal growth pattern or distinctive molecular and immunophenotypic differentiation. Here, we further explore the nature of IDC by evaluating four cases that arose within intraparotid lymph nodes. These intercalated-duct phenotype tumors with diffuse S100 protein expression demonstrated a crowded and complex epithelial proliferation arranged in cystic, cribriform, and micropapillary architecture, surrounded by an intact myoepithelial cell layer, and were completely intranodal. Of two tumors with tissue available for molecular analysis, one demonstrated a NCOA4-RET fusion and one harbored a STRN-ALK fusion that is novel to IDC. Not only does the intranodal presence of IDC present a challenging differential diagnosis, but the complex nature of this proliferation within lymph node tissue raises questions as to whether the myoepithelial component of IDC is actually non-neoplastic in nature. Furthermore, identification of a STRN-ALK fusion expands the genetic spectrum of IDC and adds to evidence of an emerging role for ALK in salivary gland tumors. Further attention to the nature of the myoepithelial cells and documentation of alternate fusion events in IDC may inform continued discussion about its appropriate classification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Brandwein-Gensler M, Gnepp DR. Low-grade cribriform cystadenocarcinoma. In: Barnes L, Eveson JW, Reichart P, Sidransky D, editors. Pathology and genetics of head and neck tumours. World Health Organization classification of tumours. Lyon: IARC; 2005. p. 430.

    Google Scholar 

  2. Brandwein-Gensler M, Hille J, Wang BY, Urken M, Gordon R, Wang LJ, et al. Low-grade salivary duct carcinoma: description of 16 cases. Am J Surg Pathol. 2004;28(8):1040–4.

    Article  Google Scholar 

  3. Chen KT. Intraductal carcinoma of the minor salivary gland. J Laryngol Otol. 1983;97(2):189–91.

    Article  CAS  Google Scholar 

  4. Delgado R, Klimstra D, Albores-Saavedra J. Low grade salivary duct carcinoma. A distinctive variant with a low grade histology and a predominant intraductal growth pattern. Cancer. 1996;78(5):958–67.

    Article  CAS  Google Scholar 

  5. Loening T, Leivo I, Simpson RHW, Weinreb I. Intraductal carcinoma. In: El-Naggar A, Chan JK, Grandis JR, Takata T, Slootweg PJ, editors. WHO classification of head and neck tumours. Lyon: International Agency for Research on Cancer; 2017. p. 170–171.

    Google Scholar 

  6. Simpson RH, Desai S, Di Palma S. Salivary duct carcinoma in situ of the parotid gland. Histopathology. 2008;53(4):416–25.

    Article  CAS  Google Scholar 

  7. Skalova A, Ptakova N, Santana T, Agaimy A, Ihrler S, Uro-Coste E, et al. NCOA4-RET and TRIM27-RET are characteristic gene fusions in salivary intraductal carcinoma, including invasive and metastatic tumors: is "intraductal" correct? Am J Surg Pathol. 2019;43(10):1303–13.

    Article  Google Scholar 

  8. Skalova A, Vanecek T, Uro-Coste E, Bishop JA, Weinreb I, Thompson LDR, et al. Molecular profiling of salivary gland intraductal carcinoma revealed a subset of tumors harboring NCOA4-RET and novel TRIM27-RET fusions: a report of 17 cases. Am J Surg Pathol. 2018;42(11):1445–55.

    Article  Google Scholar 

  9. Weinreb I, Bishop JA, Chiosea SI, Seethala RR, Perez-Ordonez B, Zhang L, et al. Recurrent RET Gene Rearrangements in Intraductal Carcinomas of Salivary Gland. Am J Surg Pathol. 2018;42(4):442–52.

    Article  Google Scholar 

  10. Weinreb I, Tabanda-Lichauco R, Van der Kwast T, Perez-Ordonez B. Low-grade intraductal carcinoma of salivary gland: report of 3 cases with marked apocrine differentiation. Am J Surg Pathol. 2006;30(8):1014–21.

    Article  Google Scholar 

  11. Bishop JA, Gagan J, Krane JF, Jo VY. Low-grade apocrine intraductal carcinoma: expanding the morphologic and molecular spectrum of an enigmatic salivary gland tumor. Head Neck Pathol. 2020. https://doi.org/10.1007/s12105-020-01128-0.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guilmette J, Dias-Santagata D, Nose V, Lennerz JK, Sadow PM. Novel gene fusions in secretory carcinoma of the salivary glands: enlarging the ETV6 family. Hum Pathol. 2019;83:50–8.

    Article  CAS  Google Scholar 

  13. Hsieh MS, Lee YH, ** YT, Kuo YJ. Clinicopathological study of intraductal carcinoma of the salivary gland, with emphasis on the apocrine type. Virchows Arch. 2020. https://doi.org/10.1007/s00428-020-02823-7.

    Article  PubMed  Google Scholar 

  14. Lu H, Graham RP, Seethala R, Chute D. Intraductal carcinoma of salivary glands harboring TRIM27-RET fusion with mixed low grade and apocrine types. Head Neck Pathol. 2020;14(1):239–45.

    Article  Google Scholar 

  15. Dalin MG, Desrichard A, Katabi N, Makarov V, Walsh LA, Lee KW, et al. Comprehensive molecular characterization of salivary duct carcinoma reveals actionable targets and similarity to apocrine breast cancer. Clin Cancer Res. 2016;22(18):4623–33.

    Article  CAS  Google Scholar 

  16. Dogan S, Ng CKY, Xu B, Kumar R, Wang L, Edelweiss M, et al. The repertoire of genetic alterations in salivary duct carcinoma including a novel HNRNPH3-ALK rearrangement. Hum Pathol. 2019;88:66–77.

    Article  CAS  Google Scholar 

  17. Luk PP, Weston JD, Yu B, Selinger CI, Ekmejian R, Eviston TJ, et al. Salivary duct carcinoma: Clinicopathologic features, morphologic spectrum, and somatic mutations. Head Neck. 2016;38(Suppl 1):E1838–E18471847.

    Article  Google Scholar 

  18. Lin SC, Ko RT, Kang BH, Wang JS. Intraductal carcinoma of salivary gland originating from an intraparotid lymph node: a case report. Malays J Pathol. 2019;41(2):207–11.

    CAS  PubMed  Google Scholar 

  19. Weinreb I. Intraductal carcinoma of salivary gland (so-called low-grade cribriform cystadenocarcinoma) arising in an intraparotid lymph node. Head Neck Pathol. 2011;5(3):321–5.

    Article  Google Scholar 

  20. Barakat N, Salman S, Nassar VH. Mucoepidermoid carcinoma in a lymph node of the parotid sheath simulating condylar tumor. Int J Oral Surg. 1973;2(1):26–30.

    Article  CAS  Google Scholar 

  21. Minic AJ. Acinic cell carcinoma arising in a parotid lymph node. Int J Oral Maxillofac Surg. 1993;22(5):289–91.

    Article  CAS  Google Scholar 

  22. Perzin KH, Livolsi VA. Acinic cell carcinoma arising in ectopic salivary gland tissue. Cancer. 1980;45(5):967–72.

    Article  CAS  Google Scholar 

  23. Smith A, Winkler B, Perzin KH, Wazen J, Blitzer A. Mucoepidermoid carcinoma arising in an intraparotid lymph node. Cancer. 1985;55(2):400–3.

    Article  CAS  Google Scholar 

  24. Wedell B, Burian P, Dahlenfors R, Stenman G, Mark J. Cytogenetical observations in a mucoepidermoid carcinoma arising from heterotopic intranodal salivary gland tissue. Oncol Rep. 1997;4(3):515–6.

    CAS  PubMed  Google Scholar 

  25. Bishop JA, Gagan J, Baumhoer D, McLean-Holden AL, Oliai BR, Couce M, et al. Sclerosing polycystic "adenosis" of salivary glands: a neoplasm characterized by PI3K pathway alterations more correctly named sclerosing polycystic adenoma. Head Neck Pathol. 2019. https://doi.org/10.1007/s12105-019-01088-0.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Haas BJ, Dobin A, Li B, Stransky N, Pochet N, Regev A. Accuracy assessment of fusion transcript detection via read-map** and de novo fusion transcript assembly-based methods. Genome Biol. 2019;20(1):213.

    Article  Google Scholar 

  27. Kurian EM, Miller R, McLean-Holden AL, Oliai BR, Bishop JA. Low Molecular weight cytokeratin immunostaining for extrafollicular reticulum cells is an effective means of separating salivary gland tumor-associated lymphoid proliferation from true lymph node involvement. Head Neck Pathol. 2019. https://doi.org/10.1007/s12105-019-01080-8.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Nishijima T, Yamamoto H, Nakano T, Hatanaka Y, Taguchi KI, Masuda M, et al. Low-grade intraductal carcinoma (low-grade cribriform cystadenocarcinoma) with tumor-associated lymphoid proliferation of parotid gland. Pathol Res Pract. 2017;213(6):706–9.

    Article  CAS  Google Scholar 

  29. Shinohara M, Harada T, Nakamura S, Oka M, Tashiro H. Heterotopic salivary gland tissue in lymph nodes of the cervical region. Int J Oral Maxillofac Surg. 1992;21(3):166–71.

    Article  CAS  Google Scholar 

  30. Teymoortash A. Back to the roots of Warthin's tumor of the parotid gland. Eur Arch Otorhinolaryngol. 2013;270(9):2397–402.

    Article  Google Scholar 

  31. Weiler C, Agaimy A, Zengel P, Zenk J, Kirchner T, Ihrler S. Nonsebaceous lymphadenoma of salivary glands: proposed development from intraparotid lymph nodes and risk of misdiagnosis. Virchows Arch. 2012;460(5):467–72.

    Article  Google Scholar 

  32. Bastos AU, de Jesus AC, Cerutti JM. ETV6-NTRK3 and STRN-ALK kinase fusions are recurrent events in papillary thyroid cancer of adult population. Eur J Endocrinol. 2018;178(1):83–91.

    Article  CAS  Google Scholar 

  33. Kelly LM, Barila G, Liu P, Evdokimova VN, Trivedi S, Panebianco F, et al. Identification of the transforming STRN-ALK fusion as a potential therapeutic target in the aggressive forms of thyroid cancer. Proc Natl Acad Sci USA. 2014;111(11):4233–8.

    Article  CAS  Google Scholar 

  34. Panebianco F, Nikitski AV, Nikiforova MN, Kaya C, Yip L, Condello V, et al. Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer. 2019;26(11):803–14.

    Article  CAS  Google Scholar 

  35. Perot G, Soubeyran I, Ribeiro A, Bonhomme B, Savagner F, Boutet-Bouzamondo N, et al. Identification of a recurrent STRN/ALK fusion in thyroid carcinomas. PLoS ONE. 2014;9(1):e87170.

    Article  Google Scholar 

  36. Basturk O, Berger MF, Yamaguchi H, Adsay V, Askan G, Bhanot UK, et al. Pancreatic intraductal tubulopapillary neoplasm is genetically distinct from intraductal papillary mucinous neoplasm and ductal adenocarcinoma. Mod Pathol. 2017;30(12):1760–72.

    Article  Google Scholar 

  37. Kusano H, Togashi Y, Akiba J, Moriya F, Baba K, Matsuzaki N, et al. Two cases of renal cell carcinoma harboring a novel STRN-ALK fusion gene. Am J Surg Pathol. 2016;40(6):761–9.

    Article  Google Scholar 

  38. Yakirevich E, Resnick MB, Mangray S, Wheeler M, Jackson CL, Lombardo KA, et al. Oncogenic ALK fusion in rare and aggressive subtype of colorectal adenocarcinoma as a potential therapeutic target. Clin Cancer Res. 2016;22(15):3831–40.

    Article  CAS  Google Scholar 

  39. Yang Y, Qin SK, Zhu J, Wang R, Li YM, **e ZY, et al. A rare STRN-ALK fusion in lung adenocarcinoma identified using next-generation sequencing-based circulating tumor DNA profiling exhibits excellent response to crizotinib. Mayo Clin Proc Innov Qual Outcomes. 2017;1(1):111–6.

    Article  Google Scholar 

  40. Nakanishi Y, Masuda S, Iida Y, Takahashi N, Hashimoto S. Case report of non-small cell lung cancer with STRN-ALK translocation: a nonresponder to alectinib. J Thorac Oncol. 2017;12(12):e202–e204204.

    Article  Google Scholar 

  41. Sasaki E, Masago K, Fujita S, Suzuki H, Hanai N, Hosoda W. Salivary secretory carcinoma harboring a novel ALK fusion: expanding the molecular characterization of carcinomas beyond the ETV6 gene. Am J Surg Pathol. 2020;44:962–9.

    Article  Google Scholar 

Download references

Funding

This study was funded in part by the Jane B. and Edwin P. Jenevein, MD Endowment for Pathology at UT Southwestern Medical Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Justin A. Bishop.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rooper, L.M., Thompson, L.D.R., Gagan, J. et al. Salivary Intraductal Carcinoma Arising within Intraparotid Lymph Node: A Report of 4 Cases with Identification of a Novel STRN-ALK Fusion. Head and Neck Pathol 15, 179–185 (2021). https://doi.org/10.1007/s12105-020-01198-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12105-020-01198-0

Keywords

Navigation