Log in

Synthesis and characterization of poly(linoleic-g-ε-caprolactone) graft copolymers via “click” reaction and ring-opening polymerization

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Linoleic acid modified with auto-oxidation, hydroxylation, bromination and azidation was used to synthesis graft copolymers using ω-alkyne-terminated poly(ε-caprolactone) (alk-PCLs) via “click” reaction. In the first step, the polymeric linoleic acid (PLina) as macroinitiator was obtained by the autoxidation of linoleic acid. Hydroxylation of the PLina was then carried out using diethanolamine to produce hydroxylated polymeric linoleic acid (PLina-OH). The PLina-OH was chemically modified with 2-bromopropionyl bromide to obtain bromo-functionalized polymeric linoleic acid (PLina-Br). This macroinitiator was then modified with sodium azide, resulting in azide polymeric linoleic acid (PLina-N3). In a parallel process, ω-alkyne-terminated poly(ε-caprolactone) (alk-PCLs) were prepared via ROP of the ε-caprolactone monomer in the presence of propiolic acid, 3-butyn-1-ol, 5-hexynoic acid, and propargyl alcohol as the precursors and tin(II) 2-ethyl hexanoate (Sn(Oct)2) as the catalyst. These preliminary steps involved the synthesis of azide and alkyne compounds capable of being linked together via the alkyne-azide cycloaddition reaction catalyzed by copper (Cu(I)), which led to poly(linoleic acid)-g-poly(ε-caprolactone) (PLina-g-PCL). The obtained polymers were characterized by proton nuclear magnetic resonance (1H NMR), Fourier-transform infrared (FTIR), differential scanning calorimetry (DSC), thermal gravimetric analysis (TGA) and elemental analysis.

Graphic abstract

JCSC-D-21-00100

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Scheme 2
Figure 4
Figure 5
Scheme 3
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Meier M A R, Metzger J O and Schubert U S 2007 Plant oil renewable resources as green malternatives in polymer science Chem. Soc. Rev. 36 1788

    Article  CAS  Google Scholar 

  2. Gandini A 2008 Polymers from renewable resources: A challenge for the future of macromolecular materials Macromolecules 41 9491

    Article  CAS  Google Scholar 

  3. Lligadas G, Ronda J C, Galiá M and Cádiz V 2010 Plant oils as platform chemicals for polyurethane synthesis: current state-of-the-art Biomacromolecules 11 2825

    Article  CAS  PubMed  Google Scholar 

  4. Biermann U, Bornscheuer U, Meier M A R, Metzger J O and Schäfer H J 2011 Oils and fats as renewable raw materials in chemistry Angew. Chemie. Int. Ed. 50 3854

    Article  CAS  Google Scholar 

  5. Gandomkar S, Dennig A, Dordic A, Hammerer L, Pickl M, Haas T, et al. 2018 Biocatalytic oxidative cascade for the conversion of fatty acids into α-ketoacids via internal H2O2 recycling Angew. Chemie. Int. Ed. 57 427

    Article  CAS  Google Scholar 

  6. Metzger J O 2009 Fats and oils as renewable feedstock for chemistry Eur. J. Lipid. Sci. Technol. 111 865

    Article  CAS  Google Scholar 

  7. Fraile J M, García J I, Herrerías C I and Pires E 2017 Synthetic transformations for the valorization of fatty acid derivatives Synth. 49 1444

    Article  CAS  Google Scholar 

  8. Keleş E and Hazer B 2009 Synthesis of segmented polyurethane based on polymeric soybean oil polyol and poly (ethylene glycol) J. Polym. Environ. 17 153

    Article  CAS  Google Scholar 

  9. **a Y and Larock R C 2010 Vegetable oil-based polymeric materials:Synthesis, properties, and applications Green Chem. 12 1893

    Article  CAS  Google Scholar 

  10. Tremblay-Parrado K K and Avérous L 2020 Renewable responsive systems based on original click and polyurethane cross-linked architectures with advanced properties ChemSusChem. 13 238

    Article  CAS  PubMed  Google Scholar 

  11. Chen B, Han A, McClements D J and Decker E A 2010 Physical structures in soybean oil and their impact on lipid oxidation J. Agric. Food Chem. 58 211993

    Article  Google Scholar 

  12. McClements D J and Decker E A 2000 Lipid oxidation in oil-in-water emulsions: Impact of molecular environment on chemical reactions in heterogeneous food systems J. Food Sci. 65 1270

    Article  CAS  Google Scholar 

  13. Alli A and Hazer B 2011 Synthesis and characterization of poly(N-isopropyl acrylamide)-g-poly(Linoleic acid)/poly(linolenic acid) graft copolymers J. Am. Oil Chem. Soc. 88 255

    Article  CAS  Google Scholar 

  14. Hazer B and Eren M 2019 Ecofriendly autoxidation of castor oil/ricinoleic acid multifunctional macroperoxide initiators for multi block/graft copolymers J. Am. Oil Chem. Soc. 96 421

    Article  CAS  Google Scholar 

  15. Allı A, Arı Y and Gökçen M 2016 Novel poly(linolenic acid) graft copolymers: synthesis, characterization and electrical properties J. Am. Oil Chem. Soc. 93 895

    Article  CAS  Google Scholar 

  16. Alli A, Alli S, Becer C R and Hazer B 2014 One-pot synthesis of poly(linoleic acid)-g poly(styrene)-g-poly(ε- caprolactone) graft copolymers J. Am. Oil Chem. Soc. 91 849

    Article  CAS  Google Scholar 

  17. Alli S, Tigli Aydin R S, Alli A and Hazer B 2015 Biodegradable poly(ε-caprolactone) based graft copolymers via poly(linoleic acid): In vitro enzymatic evaluation J. Am. Oil Chem. Soc. 92 449

    Article  CAS  Google Scholar 

  18. Alli A, Alli S, Becer C R and Hazer B 2016 Nitroxide-mediated copolymerization of styrene and pentafluorostyrene initiated by polymeric linoleic acid Eur. J. Lipid. Sci. Technol. 118 279

    Article  CAS  Google Scholar 

  19. Demir A, Alli S, Allı A and Kösemen A 2019 Organic field effect transistor with a novel poly(linoleic acid)-g-poly(methyl methacrylate)-g-poly(D, L-lactide) graft copolymer insulator using a PEDOT:PSS composite electrode J. Mater. Sci. Mater. Electron. 30 11034

    Article  CAS  Google Scholar 

  20. Acar M, Çoban S and Hazer B 2013 Novel water soluble Soya oil polymer from oxidized Soya oil polymer and diethanol amine J. Macromol. Sci. Part A Pure Appl. Chem. 50 287

    Article  CAS  Google Scholar 

  21. Biswas A, Sharma B K, Willett J L, Advaryu A, Erhan S Z and Cheng H N 2008 Azide derivatives of soybean oil and fatty esters J. Agric. Food Chem. 56 5611

    Article  CAS  PubMed  Google Scholar 

  22. Kolb H C, Finn M G and Sharpless K B 2001 Click chemistry: diverse chemical function from a few good reactions Angew. Chemie. Int. Ed. 40 2004

    Article  CAS  Google Scholar 

  23. Moses J E and Moorhouse A D 2007 The growing applications of click chemistry Chem. Soc. Rev. 36 1249

    Article  CAS  PubMed  Google Scholar 

  24. He M, Jiang S, Xu R, Yang J, Zeng Z and Chen G 2014 Facile functionalization of soybean oil by thiol-ene photo-click reaction for the synthesis of polyfunctional acrylate Prog. Org. Coat. 77 868

    Article  CAS  Google Scholar 

  25. Chen J, **ang J, Cai Z, Yong H, Wang H, Zhang L, et al. 2010 Synthesis of hydrophobic polymer brushes on silica nanoparticles via the combination of surface-initiated ATRP, ROP and click chemistry J. Macromol. Sci. Part A Pure Appl. Chem. 47 655

    Article  CAS  Google Scholar 

  26. Xu J, Ye J and Liu S 2007 Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior Macromolecules 40 9103

    Article  CAS  Google Scholar 

  27. Wang Y, Chen H, Xu Y, Sun J, Bai L, Qu R, Wang D and Yu L 2015 Synthesis of Polyvinyltetrazole Resin by Combination of RAFT Polymerization and Click Chemistry for Adsorption of Hg(II) J. Macromol. Sci. Part A Pure Appl. Chem. 52 707

  28. Tunca U 2013 Triple click reaction strategy for macromolecular diversity Macromol. Rapid. Commun. 34 38

    Article  CAS  Google Scholar 

  29. Altintas O and Tunca U 2011 Synthesis of terpolymers by click reactions Chem. Asian J. 6 2584

  30. Kempe K, Krieg A, Becer C R and Schubert U S 2012 “Clicking” on/with polymers: A rapidly expanding field for the straightforward preparation of novel macromolecular architectures Chem. Soc. Rev. 41 176

    Article  CAS  Google Scholar 

  31. Slavin S, Burns J, Haddleton D M and Becer C R 2011 Synthesis of glycopolymers via click reactions Eur. Polym. J. 47 435

    CAS  Google Scholar 

  32. Becer C R, Kokado K, Weber C, Can A, Chujo Y and Schubert U S 2010 Metal-free synthesis of responsive polymers: Cloud point tuning by controlled “click” reaction J. Polym. Sci. Part A Polym. Chem. 48 1278

    Article  CAS  Google Scholar 

  33. Acik G 2020 Bio-based poly(ɛ-caprolactone) from soybean-oil derived polyol via ring-opening polymerization. J. Polym. Environ. 28 668

  34. Binder W H and Sachsenhofer R 2007 “Click” chemistry in polymer and materials science Macromol. Rapid Commun. 28 15

    Article  CAS  Google Scholar 

  35. Gao H and Matyjaszewski K 2006 Synthesis of star polymers by a combination of ATRP and the “click” coupling method Macromolecules 39 4960

  36. Altinkok C, Karabulut H R F, Tasdelen M A, Acik G 2020 Bile acid bearing poly (vinyl chloride) nanofibers by combination of CuAAC click chemistry and electrospinning process Mater. Today Commun. 25 101425

  37. Wang C W, Liu C, Zhu X W, Yang Z Y and Sun H F 2016 Synthesis of well-defined star shaped poly(ε- caprolactone)/poly(ethylbene glycol) amphiphilic conetworks by combination of ring opening polymerization and “click” chemistry J. Polym. Sci. Part A Polym. Chem. 54 407

    Article  CAS  Google Scholar 

  38. Hong J, Luo Q and Shah B K 2010 Catalyst- and solvent-free “click” chemistry: A facile approach to obtain cross-linked biopolymers from soybean oil Biomacromolecules 11 2960

  39. Arseneault M, Wafer C and Morin J F 2015 Recent advances in click chemistry applied to dendrimer synthesis Molecules 20 9263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Göktas M, Öztürk T, Atalar M N, Tekes A T and Hazer B 2014 One-step synthesis of triblock copolymers via simultaneous reversible-addition fragmentation chain transfer (RAFT) and ring-opening polymerization using a novel difunctional macro-RAFT agent based on polyethylene glycol J. Macromol. Sci. Part A Pure Appl. Chem. 51 854

  41. Coulembier O, Degée P, Hedrick JL and Dubois P 2006 From controlled ring-opening polymerization to biodegradable aliphatic polyester: Especially poly(β-malic acid) derivatives Prog. Polym. Sci. 31 723

    Article  CAS  Google Scholar 

  42. Uyar Z, Genli N, Cay B, Arslan U, Durgun M and Degirmenci M 2019 Synthesis and characterization of an A2B2-type miktoarm star copolymer based on poly(ε-caprolactone) and poly(cyclohexene oxide) Polym. Bull. 76 553

    Article  CAS  Google Scholar 

  43. Degirmenci M, Sarac M A and Genli N 2014 Synthesis and characterization of mid-chain macrophotoinitiator of poly(ε-caprolactone) by combination of ROP and click chemistry Polym. Bull. 71 1743

    Article  CAS  Google Scholar 

  44. Deanin R D 1992 New useful polymers by ring-opening polymerization Polym. Plast. Technol. Eng. 31 229

    Article  Google Scholar 

  45. Amici J, Kahveci M U, Allia P, Tiberto P and Yagci Y 2012 Sangermano M. Polymer grafting onto magnetite nanoparticles by “click” reaction J. Mater. Sci. 47 412

  46. Tasdelen M A 2011 Poly(epsilon-caprolactone) / clay nanocomposites via “click” chemistry Eur. Polym. J. 47 937

    Article  CAS  Google Scholar 

  47. Powers P O 1949 Mechanism of the oxidation of drying oils Ind. Eng. Chem. 41 304

    Article  CAS  Google Scholar 

  48. Cowan J C 1949 lsomerization reactions of drying oils Ind. Eng. Chem. 41 294

    Article  CAS  Google Scholar 

  49. Taylor W L 1950 Blowing drying oils J. Am. Oil Chem. Soc. 27 472

    Article  CAS  Google Scholar 

  50. Hazer B, Hazer D B and Coban B 2010 Synthesis of microbial elastomers based on soybean oil Autoxidation kinetics, thermal and mechanical properties J. Polym. Res. 17 567

    Article  CAS  Google Scholar 

  51. Cakmakli B, Hazer B, Tekin I O, Kizgut S, Koksal M and Menceloglu Y 2004 Synthesis and characterization of polymeric linseed oil grafted methyl methacrylate or styrene Macromol. Biosci. 4 649

    Article  CAS  PubMed  Google Scholar 

  52. Andrade D F, Mazzei J L, Kaiser C R and D’Avila L A 2012 Assessment of different measurement methods using 1H-NMR data for the analysis of the transesterification of vegetable oils J. Am. Oil Chem. Soc. 89 619

    Article  CAS  Google Scholar 

  53. Kuo P L, Hou S S, Teng C K and Liang W J 2001 Function and performance of silicone copolymer (VI) Synthesis and novel solution behavior of water-soluble polysiloxanes with different hydrophiles Colloid. Polym. Sci. 279 286

    Article  CAS  Google Scholar 

  54. KenJie L M S F and Lam C C 1995 1H-Nuclear magnetic resonance spectroscopic studies of saturated, acetylenic and ethylenic triacylglycerols Chem. Phys. Lipid. 77 155

    Article  Google Scholar 

  55. Berthier D L, Herrmann A and Ouali L 2011 Synthesis of hydroxypropyl cellulose derivatives modified with amphiphilic diblock copolymer side-chains for the slow release of volatile molecules Polym. Chem. 22 2093

    Article  CAS  Google Scholar 

  56. Das D, Mukherjee S, Pal A, Das R, Sahu S G and Pal S 2016 Synthesis and characterization of biodegradable copolymer derived from dextrin and poly(vinyl acetate) via atom transfer radical polymerization RSC Adv. 6 9352

    Article  CAS  Google Scholar 

  57. Seidi F and Zarei A 2016 ATRP grafting of poly(N, N-dimethylamino-2-ethyl methacrylate) onto the fatty-acid-modified agarose backbone via the “grafting-from” technique Starch/Staerke 68 644

    Article  CAS  Google Scholar 

  58. Zhai S, Shang J, Yang D, Wang S, Hu J, Lu G and Huang X 2012 Successive SET-LRP and ATRP synthesis of ferrocene-based PPEGMEA-g-PAEFC well-defined amphiphilic graft copolymer J. Polym. Sci. Part A Polym. Chem. 50 811

    Article  CAS  Google Scholar 

  59. Cakmak S, Cakmak A S and Gümüşderelioǧlu M 2013 PNIPAAm-grafted thermoresponsive microcarriers: Surface-initiated ATRP synthesis and characterization Mater. Sci. Eng. C 33 3033

    Article  CAS  Google Scholar 

  60. Carvalho L T, Moraes R M, Alves G M, Lacerda T M, Santos J C, Santos A M and Medeiros S F 2020 Synthesis of amphiphilic pullulan-graft-poly(ε-caprolactone) via click chemistry Int. J. Biol. Macromol. 145 701

    Article  CAS  PubMed  Google Scholar 

  61. Catıker E, Meyvacı E, Atakay M, Salih B and Öztürk T 2019 Synthesis and characterization of amphiphilic triblock copolymers including β-alanine/α-methyl-β-alanine and ethylene glycol by “click” chemistry Polym. Bull. 76 2113

    Article  CAS  Google Scholar 

  62. Mansour Lakouraj M, Hasantabar V and Bagheri N 2013 Synthesis of polyethers containing triazole units in the backbone by click chemistry in a tricomponent reaction J. Polym. 2013 1

    Article  CAS  Google Scholar 

  63. Rukmanikrishnan B and Muthusamy S 2018 Preparation and properties of polyimides containing 1,2,3 triazole moieties Adv. Polym. Technol. 37 50

    Article  CAS  Google Scholar 

  64. Babaie A, Rezaei M and Sofia R L M 2019 Investigation of the effects of polycaprolactone molecular weight and graphene content on crystallinity, mechanical properties and shape memory behavior of polyurethane/graphene nanocomposites J. Mech. Behav. Biomed. Mater. 96 53

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was funded by the Düzce University Research Fund (Grant Number: 2016.07.06.487, 2019.07.06.1021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sema Alli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alli, S. Synthesis and characterization of poly(linoleic-g-ε-caprolactone) graft copolymers via “click” reaction and ring-opening polymerization. J Chem Sci 133, 74 (2021). https://doi.org/10.1007/s12039-021-01923-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-021-01923-4

Keywords

Navigation