Log in

Lithium Chloride Promotes Endogenous Synthesis of CLA in Bovine Mammary Epithelial Cells

  • Research
  • Published:
Biological Trace Element Research Aims and scope Submit manuscript

Abstract

Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce. Previous research found that the key enzyme, stearoyl-CoA desaturase (SCD) for the synthesis of CLA, can be expressed more actively in bovine mammary epithelial cells (MAC-T) when lithium chloride (LiCl) is present. This study investigated whether LiCl can encourage CLA synthesis in MAC-T cells. The results showed that LiCl effectively increased SCD and proteasome α5 subunit (PSMA5) protein expression in MAC-T cells as well as the content of CLA and its endogenous synthesis index. LiCl enhanced the expression of proliferator-activated receptor-γ (PPARγ), sterol regulatory element-binding protein 1 (SREBP1), and its downstream enzymes acetyl CoA carboxylase (ACC), fatty acid synthase (FASN), lipoprotein lipase (LPL), and Perilipin 2 (PLIN2). The addition of LiCl significantly enhanced p-GSK-3β, β-catenin, p-β-catenin protein expression, hypoxia-inducible factor-1α (HIF-1α), and downregulation factor genes for mRNA expression (P < 0.05). These findings highlight that LiCl can increase the expression of SCD and PSMA5 by activating the transcription of HIF-1α, Wnt/β-catenin, and the SREBP1 signaling pathways to promote the conversion of trans-vaccenic acid (TVA) to the endogenous synthesis of CLA. This data suggests that the exogenous addition of nutrients can increase CLA content in milk through pertinent signaling pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Data are available for consultation upon request to the corresponding author.

References

  1. den Hartigh LJ (2019) Conjugated linoleic acid effects on cancer, obesity, and atherosclerosis: a review of pre-clinical and human trials with current perspectives. Nutrients 11. https://doi.org/10.3390/nu11020370

  2. Domagala D, Leszczynska T, Koronowicz A, Domagala B, Drozdowska M, Piasna-Slupecka E (2021) Mechanisms of anticancer activity of a fatty acid mixture extracted from hen egg yolks enriched in conjugated linoleic acid diene (CLA) against WM793 Melanoma Cells. Nutrients 13. https://doi.org/10.3390/nu13072348

  3. Fujita Y, Kano K, Kishino S, Nagao T, Shen XF, Sato C, Hatakeyama H, Ota Y, Niibori S, Nomura A et al (2021) Dietary cis-9, trans-11-conjugated linoleic acid reduces amyloid beta-protein accumulation and upregulates anti-inflammatory cytokines in an Alzheimer’s disease mouse model. Sci Rep 11(1):9749. https://doi.org/10.1038/s41598-021-88870-9

  4. Griinari JM, Corl BA, Lacy SH, Chouinard PY, Nurmela KVV, Bauman DE (2000) Conjugated linoleic acid is synthesized endogenously in lactating dairy cows by Delta(9)-desaturase. J Nutr 130:2285–2291. https://doi.org/10.1093/jn/130.9.2285

    Article  PubMed  CAS  Google Scholar 

  5. Kuhl GC, Mazzon RR, Simas Porto BL, Zamboni Madaloz T, Razzera G, Patricio DO, Linehan K, Ahern G, Mathur H, Ross P et al (2021) Oleate hydratase in Lactobacillus delbrueckii subsp. bulgaricus LBP UFSC 2230 catalyzes the reversible conversion between linoleic acid and ricinoleic acid. Microbiol Spectr 9:e0117921. https://doi.org/10.1128/Spectrum.01179-21

    Article  PubMed  Google Scholar 

  6. Toral PG, Hervas G, Frutos P (2022) Effect of lipid supplementation on the endogenous synthesis of milk cis-9, trans-11 conjugated linoleic acid in dairy sheep and goats: a tracer assay with (13)C-vaccenic acid. J Dairy Sci 105:255–268. https://doi.org/10.3168/jds.2021-20728

    Article  PubMed  CAS  Google Scholar 

  7. Song J, Wang YJ, Fan XQ, Wu HW, Han JH, Yang M, Lu L, Nie GH (2019) Trans-vaccenic acid inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cells via a mitochondrial-mediated apoptosis pathway. Lipids Health Dis 18(1):46. https://doi.org/10.1186/s12944-019-0993-8

  8. ** YC, Lee HG, Xu CX, Han JA, Choi SH, Song MK, Kim YJ, Lee KB, Kim SK, Kang HS et al (2010) Proteomic analysis of endogenous conjugated linoleic acid biosynthesis in lactating rats and mouse mammary gland epithelia cells (HC11). Biochim Biophys Acta 1804:745–751. https://doi.org/10.1016/j.bbapap.2009.11.016

    Article  PubMed  CAS  Google Scholar 

  9. Wang T, Lee H, Zhen Y (2018) Responses of MAC-T cells to inhibited stearoyl-CoA desaturase 1 during cis-9, trans-11 conjugated linoleic acid synthesis. Lipids 53:647–652. https://doi.org/10.1002/lipd.12077

    Article  PubMed  CAS  Google Scholar 

  10. Rioux V, Legrand P (2019) Fatty acid desaturase 3 (FADS3) is a specific 13-desaturase of ruminant trans-vaccenic acid. Lifestyle Genom 12:18–24. https://doi.org/10.1159/000502356

    Article  PubMed  CAS  Google Scholar 

  11. Kikuchi K, Tsukamoto H (2020) Stearoyl-CoA desaturase and tumorigenesis. Chem Biol Interact 316:108917. https://doi.org/10.1016/j.cbi.2019.108917

    Article  PubMed  CAS  Google Scholar 

  12. ** YC, Li ZH, Hong ZS, Xu CX, Han JA, Choi SH, Yin JL, Zhang QK, Lee KB, Kang SK et al (2012) Conjugated linoleic acid synthesis-related protein proteasome subunit alpha 5 (PSMA5) is increased by vaccenic acid treatment in goat mammary tissue. J Dairy Sci 95:4286–4297. https://doi.org/10.3168/jds.2011-4281

    Article  PubMed  CAS  Google Scholar 

  13. Liu X, Shen J, Zong J, Liu J, ** Y (2021) Beta-sitosterol promotes milk protein and fat syntheses-related genes in bovine mammary epithelial cells. Animals (Basel) 11. https://doi.org/10.3390/ani11113238

  14. Zong J, Shen J, Liu X, Liu J, Zhang J, Zhou C, Fan Y, ** Y (2022) Lithium chloride promotes milk protein and fat synthesis in bovine mammary epithelial cells via HIF-1alpha and beta-catenin signaling pathways. Biol Trace Elem Res. https://doi.org/10.1007/s12011-022-03131-8

    Article  PubMed  Google Scholar 

  15. Woodward TL, Turner JD, Hung HT, Zhao X (1996) Inhibition of cellular proliferation and modulation of insulin-like growth factor binding proteins by retinoids in a bovine mammary epithelial cell line. J Cell Physiol 167:488–499. https://doi.org/10.1002/(SICI)1097-4652(199606)167:3<488::AID-JCP13>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  16. Huynh HT, Robitaille G, Turner JD (1991) Establishment of bovine mammary epithelial cells (MAC-T): an in vitro model for bovine lactation. Exp Cell Res 197:191–199. https://doi.org/10.1016/0014-4827(91)90422-q

    Article  PubMed  CAS  Google Scholar 

  17. Petit CA, Gardes M, Feunteun J (1983) Immortalization of rodent embryo fibroblasts by SV40 is maintained by the A gene. Virology 127:74–82. https://doi.org/10.1016/0042-6822(83)90372-0

    Article  PubMed  CAS  Google Scholar 

  18. Ontsouka EC, Bertschi JS, Huang X, Luthi M, Muller S, Albrecht C (2016) Can widely used cell type markers predict the suitability of immortalized or primary mammary epithelial cell models? Biol Res 49:1. https://doi.org/10.1186/s40659-015-0063-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ogunnaike M, Wang H, Zempleni J (2021) Bovine mammary alveolar MAC-T cells afford a tool for studies of bovine milk exosomes in drug delivery. Int J Pharm 610:121263. https://doi.org/10.1016/j.ijpharm.2021.121263

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Li L, Tang W, Zhao M, Gong B, Cao M, Li J (2021) Study on the regulation mechanism of lipopolysaccharide on oxidative stress and lipid metabolism of bovine mammary epithelial cells. Physiol Res 70:777–785. https://doi.org/10.33549/physiolres.934682

  21. Wang X, Zhang M, Jiang N, Zhang A (2018) Sodium phenylbutyrate ameliorates inflammatory response induced by staphylococcus aureus lipoteichoic acid via suppressing TLR2/NF-kappaB/NLRP3 pathways in MAC-T cells. Molecules 23. https://doi.org/10.3390/molecules23123056

  22. Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226:497–509

    Article  PubMed  CAS  Google Scholar 

  23. Huebner SM, Olson JM, Campbell JP, Bishop JW, Crump PM, Cook ME (2016) Low dietary c9t11-conjugated linoleic acid intake from dairy fat or supplements reduces inflammation in collagen-induced arthritis. Lipids 51:807–819. https://doi.org/10.1007/s11745-016-4163-8

    Article  PubMed  CAS  Google Scholar 

  24. Schaftenaar F, Frodermann V, Kuiper J, Lutgens E (2016) Atherosclerosis: the interplay between lipids and immune cells. Curr Opin Lipidol 27:209–215. https://doi.org/10.1097/MOL.0000000000000302

    Article  PubMed  CAS  Google Scholar 

  25. Corl BA, Baumgard LH, Dwyer DA, Griinari JM, Phillips BS, Bauman DE (2001) The role of Delta(9)-desaturase in the production of cis-9, trans-11 CLA. J Nutr Biochem 12:622–630. https://doi.org/10.1016/S0955-2863(01)00180-2

    Article  PubMed  CAS  Google Scholar 

  26. Corl BA, Barbano DM, Bauman DE, Ip C (2003) cis-9, trans-11 CLA derived endogenously from trans-11 18:1 reduces cancer risk in rats. J Nutr 133:2893–2900. https://doi.org/10.1093/jn/133.9.2893

    Article  PubMed  CAS  Google Scholar 

  27. Lee YJ, Jenkins TC (2011) Biohydrogenation of linolenic acid to stearic acid by the rumen microbial population yields multiple intermediate conjugated diene isomers. J Nutr 141:1445–1450. https://doi.org/10.3945/jn.111.138396

    Article  PubMed  CAS  Google Scholar 

  28. Peng LY, Bai G, Wang CZ, Dong JN, Liu YJ, Sun Z, Zhen YG, Qin GX, Zhang XF, Demelash N et al (2022) Proteomics insights into the gene network of cis9, trans11-conjugated linoleic acid biosynthesis in bovine mammary gland epithelial cells. Animals-Basel 12(13):1718. https://doi.org/10.3390/ani12131718

  29. Bernard L, Rouel J, Leroux C, Ferlay A, Faulconnier Y, Legrand P, Chilliard Y (2005) Mammary lipid metabolism and milk fatty acid secretion in alpine goats fed vegetable lipids. J Dairy Sci 88:1478–1489. https://doi.org/10.3168/jds.S0022-0302(05)72816-2

    Article  PubMed  CAS  Google Scholar 

  30. Conte G, Mele M, Chessa S, Castiglioni B, Serra A, Pagnacco G, Secchiari P (2010) Diacylglycerol acyltransferase 1, stearoyl-CoA desaturase 1, and sterol regulatory element binding protein 1 gene polymorphisms and milk fatty acid composition in Italian Brown cattle. J Dairy Sci 93:753–763. https://doi.org/10.3168/jds.2009-2581

    Article  PubMed  CAS  Google Scholar 

  31. Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B (2017) Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 58:1845–1854. https://doi.org/10.1194/jlr.M077198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Tudisco R, Morittu VM, Addi L, Moniello G, Grossi M, Musco N, Grazioli R, Mastellone V, Pero ME, Lombardi P et al (2019) Influence of pasture on stearoyl-CoA desaturase and miRNA 103 expression in goat milk: preliminary results. Animals (Basel) 9. https://doi.org/10.3390/ani9090606

  33. Hu Y, Wang Y, Wang X, Wu X, Fu L, Liu X, Wen Y, Sheng J, Zhang J (2021) The role of cation diffusion facilitator CDF-1 in lipid metabolism in Caenorhabditis elegans. G3 (Bethesda). https://doi.org/10.1093/g3journal/jkab120

  34. Oshino N, Sato R (1972) The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Arch Biochem Biophys 149:369–377. https://doi.org/10.1016/0003-9861(72)90335-9

    Article  PubMed  CAS  Google Scholar 

  35. Kato H, Sakaki K, Mihara K (2006) Ubiquitin-proteasome-dependent degradation of mammalian ER stearoyl-CoA desaturase. J Cell Sci 119:2342–2353. https://doi.org/10.1242/jcs.02951

    Article  PubMed  CAS  Google Scholar 

  36. Wang T, Lee SB, Hwang JH, Lim JN, Jung US, Kim MJ, Kang HS, Choi SH, Lee JS, Roh SG et al (2015) Proteomic analysis reveals PGAM1 altering cis-9, trans-11 conjugated linoleic acid synthesis in bovine mammary gland. Lipids 50:469–481. https://doi.org/10.1007/s11745-015-4009-9

    Article  PubMed  CAS  Google Scholar 

  37. Lin X, Loor JJ, Herbein JH (2004) Trans10, cis12-18:2 is a more potent inhibitor of de novo fatty acid synthesis and desaturation than cis9, trans11-18:2 in the mammary gland of lactating mice. J Nutr 134:1362–1368. https://doi.org/10.1093/jn/134.6.1362

    Article  PubMed  CAS  Google Scholar 

  38. Lu F, Zhou J, Chen Q, Zhu J, Zheng X, Fang N, Qiao L (2022) PSMA5 contributes to progression of lung adenocarcinoma in association with the JAK/STAT pathway. Carcinogenesis. https://doi.org/10.1093/carcin/bgac046

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chiao CC, Liu YH, Phan NN, An Ton NT, Ta HDK, Anuraga G, Minh Xuan DT, Fitriani F, Putri Hermanto EM, Athoillah M et al (2021) Prognostic and genomic analysis of proteasome 20s subunit alpha (PSMA) family members in breast cancer. Diagnostics (Basel) 11. https://doi.org/10.3390/diagnostics11122220

  40. Aumeistere L, Belusko A, Ciprovica I, Zavadska D (2021) Trans fatty acids in human milk in Latvia: association with dietary habits during the lactation period. Nutrients 13. https://doi.org/10.3390/nu13092967

  41. Mojska H, Socha P, Socha J, Soplinska E, Jaroszewska-Balicka W, Szponar L (2003) Trans fatty acids in human milk in Poland and their association with breastfeeding mothers’ diets. Acta Paediatr 92:1381–1387. https://doi.org/10.1080/08035250310006692

    Article  PubMed  CAS  Google Scholar 

  42. Bionaz M, Loor JJ (2008) Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 9:366. 2008/08/02 Edition

  43. Xu HF, Luo J, Zhao WS, Yang YC, Tian HB, Shi HB, Bionaz M (2016) Overexpression of SREBP1 (sterol regulatory element binding protein 1) promotes de novo fatty acid synthesis and triacylglycerol accumulation in goat mammary epithelial cells. J Dairy Sci 99:783–795. https://doi.org/10.3168/jds.2015-9736

    Article  PubMed  CAS  Google Scholar 

  44. Horton JD, Shah NA, Warrington JA, Anderson NN, Park SW, Brown MS, Goldstein JL (2003) Combined analysis of oligonucleotide microarray data from transgenic and knockout mice identifies direct SREBP target genes. Proc Natl Acad Sci U S A 100:12027–12032. https://doi.org/10.1073/pnas.1534923100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Li J, Luo J, Xu H, Wang M, Zhu J, Shi H, Haile AB, Wang H, Sun Y (2015) Fatty acid synthase promoter: characterization, and transcriptional regulation by sterol regulatory element binding protein-1 in goat mammary epithelial cells. Gene 561:157–164. https://doi.org/10.1016/j.gene.2015.02.034

    Article  PubMed  CAS  Google Scholar 

  46. Yao D, Luo J, He Q, Shi H, Li J, Wang H, Xu H, Chen Z, Yi Y, Loor JJ (2017) SCD1 alters long-chain fatty acid (LCFA) composition and its expression is directly regulated by SREBP-1 and PPARgamma 1 in Dairy Goat Mammary Cells. J Cell Physiol 232:635–649. https://doi.org/10.1002/jcp.25469

    Article  PubMed  CAS  Google Scholar 

  47. Zhu L, Du W, Liu Y, Cheng M, Wang X, Zhang C, Lv X, Li F, Zhao S, Hao J (2019) Prolonged high-glucose exposure decreased SREBP-1/FASN/ACC in Schwann cells of diabetic mice via blocking PI3K/Akt pathway. J Cell Biochem 120:5777–5789. https://doi.org/10.1002/jcb.27864

    Article  PubMed  CAS  Google Scholar 

  48. Aryal B, Price NL, Suarez Y, Fernandez-Hernando C (2019) ANGPTL4 in metabolic and cardiovascular disease. Trends Mol Med 25:723–734. https://doi.org/10.1016/j.molmed.2019.05.010

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Hao Z, Luo Y, Wang J, Hickford JGH, Zhou H, Hu J, Liu X, Li S, Shen J, Ke N et al (2021) MicroRNA-432 inhibits milk fat synthesis by targeting SCD and LPL in ovine mammary epithelial cells. Food Funct 12:9432–9442. https://doi.org/10.1039/d1fo01260f

    Article  PubMed  CAS  Google Scholar 

  50. Auwerx J (1999) PPARgamma, the ultimate thrifty gene. Diabetologia 42:1033–1049. https://doi.org/10.1007/s001250051268

    Article  PubMed  CAS  Google Scholar 

  51. Janani C, Ranjitha Kumari BD (2015) PPAR gamma gene–a review. Diabetes Metab Syndr 9:46–50. https://doi.org/10.1016/j.dsx.2014.09.015

    Article  PubMed  CAS  Google Scholar 

  52. Meng FG, Zhang XN, Liu SX, Wang YR, Zeng T (2020) Roles of peroxisome proliferator-activated receptor alpha in the pathogenesis of ethanol-induced liver disease. Chem Biol Interact 327:109176. https://doi.org/10.1016/j.cbi.2020.109176

    Article  PubMed  CAS  Google Scholar 

  53. Khan D, Ara T, Ravi V, Rajagopal R, Tandon H, Parvathy J, Gonzalez EA, Asirvatham-Jeyaraj N, Krishna S, Mishra S et al (2021) SIRT6 transcriptionally regulates fatty acid transport by suppressing PPARgamma. Cell Rep 35:109190. https://doi.org/10.1016/j.celrep.2021.109190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Pawlak P, Malyszka N, Szczerbal I, Kolodziejski P (2020) Fatty acid induced lipolysis influences embryo development, gene expression and lipid droplet formation in the porcine cumulus cellsdagger. Biol Reprod 103:36–48. https://doi.org/10.1093/biolre/ioaa045

    Article  PubMed  PubMed Central  Google Scholar 

  55. Lee Y, Kim SM, Jung EH, Park J, Lee JW, Han IO (2020) Lithium chloride promotes lipid accumulation through increased reactive oxygen species generation. Biochim Biophys Acta Mol Cell Biol Lipids 1865:158552. https://doi.org/10.1016/j.bbalip.2019.158552

    Article  PubMed  CAS  Google Scholar 

  56. Chi YY, Shen JL, Zhang J, Shan AS, Niu SL, Zhou CH, Lee HG, ** YC (2016) Lithium chloride’s inhibition of 3T3-L1 cell differentiation by regulating the Wnt/beta-catenin pathway and enhancing villin 2 expression. Food Sci Biotechnol 25:1147–1153. https://doi.org/10.1007/s10068-016-0183-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810. https://doi.org/10.1146/annurev.cellbio.20.010403.113126

    Article  PubMed  CAS  Google Scholar 

  58. Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3 beta is a common event in neuroprotection by different survival factors. Mol Brain Res 137:193–201. https://doi.org/10.1016/j.molbrainres.2005.03.004

    Article  PubMed  CAS  Google Scholar 

  59. Undi RB, Gutti U, Gutti RK (2017) LiCl regulates mitochondrial biogenesis during megakaryocyte development. J Trace Elem Med Biol 39:193–201. https://doi.org/10.1016/j.jtemb.2016.10.003

    Article  PubMed  CAS  Google Scholar 

  60. Mirakhori F, Zeynali B, Tafreshi AP, Shirmohammadian A (2013) Lithium induces follicular atresia in rat ovary through a GSK-3beta/beta-catenin dependent mechanism. Mol Reprod Dev 80:286–296. https://doi.org/10.1002/mrd.22163

    Article  PubMed  CAS  Google Scholar 

  61. Bai L, Chang HM, Cheng JC, Chu G, Leung PCK, Yang G (2018) Lithium chloride inhibits StAR and progesterone production through GSK-3beta and ERK1/2 signaling pathways in human granulosa-lutein cells. Mol Cell Endocrinol 461:89–99. https://doi.org/10.1016/j.mce.2017.08.018

    Article  PubMed  CAS  Google Scholar 

  62. Liu X, Lu X, Song K, Blackman MR (2016) Natural functions of PLIN2 mediating Wnt/LiCl signaling and glycogen synthase kinase 3 (GSK3)/GSK3 substrate-related effects are modulated by lipid. Mol Cell Biol 36:421–437. https://doi.org/10.1128/MCB.00510-15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xu H, Wang J, Zhang X, Li Z, Wang Y, Xue C (2015) Inhibitory effect of fucosylated chondroitin sulfate from the sea cucumber Acaudina molpadioides on adipogenesis is dependent on Wnt/beta-catenin pathway. J Biosci Bioeng 119:85–91. https://doi.org/10.1016/j.jbiosc.2014.05.026

    Article  PubMed  CAS  Google Scholar 

  64. Abiola M, Favier M, Christodoulou-Vafeiadou E, Pichard AL, Martelly I, Guillet-Deniau I (2009) Activation of Wnt/beta-catenin signaling increases insulin sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in skeletal muscle cells. Plos One 4:e8509. https://doi.org/10.1371/journal.pone.0008509

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Shao Y, Zhao FQ (2014) Emerging evidence of the physiological role of hypoxia in mammary development and lactation. J Anim Sci Biotechnol 5:9. https://doi.org/10.1186/2049-1891-5-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Badowska-Kozakiewicz AM, Sobol M, Patera J (2017) Expression of multidrug resistance protein P-glycoprotein in correlation with markers of hypoxia (HIF-1alpha, EPO, EPO-R) in invasive breast cancer with metastasis to lymph nodes. Arch Med Sci 13:1303–1314. https://doi.org/10.5114/aoms.2016.62723

    Article  PubMed  CAS  Google Scholar 

  67. Penna F, Busquets S, Toledo M, Pin F, Massa D, Lopez-Soriano FJ, Costelli P, Argiles JM (2013) Erythropoietin administration partially prevents adipose tissue loss in experimental cancer cachexia models. J Lipid Res 54:3045–3051. https://doi.org/10.1194/jlr.M038406

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Choi K, ** M, Zouboulis CC, Lee Y (2021) Increased lipid accumulation under hypoxia in SZ95 human sebocytes. Dermatology 237:131–141. https://doi.org/10.1159/000505537

    Article  PubMed  CAS  Google Scholar 

  69. Baumeister W, Walz J, Zuhl F, Seemuller E (1998) The proteasome: paradigm of a self-compartmentalizing protease. Cell 92:367–380. https://doi.org/10.1016/s0092-8674(00)80929-0

    Article  PubMed  CAS  Google Scholar 

  70. Voges D, Zwickl P, Baumeister W (1999) The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu Rev Biochem 68:1015–1068. https://doi.org/10.1146/annurev.biochem.68.1.1015

    Article  PubMed  CAS  Google Scholar 

  71. Glickman MH, Ciechanover A (2002) The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction. Physiol Rev 82:373–428. https://doi.org/10.1152/physrev.00027.2001

    Article  PubMed  CAS  Google Scholar 

  72. Tanaka K (2009) The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci 85:12–36. https://doi.org/10.2183/pjab.85.12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Collins GA, Goldberg AL (2017) The logic of the 26S proteasome. Cell 169:792–806. https://doi.org/10.1016/j.cell.2017.04.023

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Fu Z, Lu C, Zhang C, Qiao B (2019) PSMA5 promotes the tumorigenic process of prostate cancer and is related to bortezomib resistance. Anticancer Drugs 30:e0773. https://doi.org/10.1097/CAD.0000000000000773

    Article  PubMed  CAS  Google Scholar 

  75. Livnat-Levanon N, Glickman MH (2011) Ubiquitin-proteasome system and mitochondria - reciprocity. Biochim Biophys Acta 1809:80–87. https://doi.org/10.1016/j.bbagrm.2010.07.005

    Article  PubMed  CAS  Google Scholar 

  76. Ding WX, Ni HM, Gao W, Yoshimori T, Stolz DB, Ron D, Yin XM (2007) Linking of autophagy to ubiquitin-proteasome system is important for the regulation of endoplasmic reticulum stress and cell viability. Am J Pathol 171:513–524. https://doi.org/10.2353/ajpath.2007.070188

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Sulkshane P, Ram J, Thakur A, Reis N, Kleifeld O, Glickman MH (2021) Ubiquitination and receptor-mediated mitophagy converge to eliminate oxidation-damaged mitochondria during hypoxia. Redox Biol 45:102047. https://doi.org/10.1016/j.redox.2021.102047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. An T, Gong Y, Li X, Kong L, Ma P, Gong L, Zhu H, Yu C, Liu J, Zhou H et al (2017) USP7 inhibitor P5091 inhibits Wnt signaling and colorectal tumor growth. Biochem Pharmacol 131:29–39. https://doi.org/10.1016/j.bcp.2017.02.011

    Article  PubMed  CAS  Google Scholar 

  79. Glaeser K, Urban M, Fenech E, Voloshanenko O, Kranz D, Lari F, Christianson JC, Boutros M (2018) ERAD-dependent control of the Wnt secretory factor Evi. EMBO J 37. https://doi.org/10.15252/embj.201797311

  80. Voutsadakis IA (2010) Peroxisome proliferator activated receptor-gamma and the ubiquitin-proteasome system in colorectal cancer. World J Gastrointest Oncol 2:235–241. https://doi.org/10.4251/wjgo.v2.i5.235

    Article  PubMed  PubMed Central  Google Scholar 

  81. Wang DT, Lu L, Shi Y, Geng ZB, Yin Y, Wang M, Wei LB (2014) Supplementation of ketoacids contributes to the up-regulation of the Wnt7a/Akt/p70S6K pathway and the down-regulation of apoptotic and ubiquitin-proteasome systems in the muscle of 5/6 nephrectomised rats. Br J Nutr 111:1536–1548. https://doi.org/10.1017/S0007114513004091

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Professor Hong-Gu Lee (Department of Animal Science and Technology, Sanghuh College of Life Sciences, Konkuk University, Seoul 05029, Korea) for generously provided MAC-T cells for cell culture assays.

Funding

This study was funded by the Jilin Provincial Department of Education (JJKH20201022KJ) and the National Natural Science Foundation of China (31301996).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Yongcheng ** and **glin Shen; methodology, **xin Zong; validation, **xin Zong, and Jiayi Liu; investigation, Yating Fan and Junhao Cui; resources, **glin Shen.; data curation, **xin Zong; writing—original draft preparation, Jiayi Liu; writing—review and editing, Yongcheng ** and Dongqiao Peng; visualization, Jiayi Liu; supervision, Yongcheng **,**glin Shen and Dongqiao Peng; project administration, Yongcheng **; funding acquisition, Yongcheng **. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yongcheng **.

Ethics declarations

Ethical Approval

This study does not involve any human or animal testing.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Shen, J., Zong, J. et al. Lithium Chloride Promotes Endogenous Synthesis of CLA in Bovine Mammary Epithelial Cells. Biol Trace Elem Res 202, 513–526 (2024). https://doi.org/10.1007/s12011-023-03679-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12011-023-03679-z

Keywords

Navigation