Log in

Therapeutic “Tool” in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Repairing osteochondral defects to restore joint function is a major challenge in regenerative medicine. However, with recent advances in tissue engineering, the development of potential treatments is promising. In recent years, in addition to single-layer scaffolds, double-layer or multilayer scaffolds have been prepared to mimic the structure of articular cartilage and subchondral bone for osteochondral repair. Although there are a range of different cells such as umbilical cord stem cells, bone marrow mesenchyml stem cell, and others that can be used, the availability, ease of preparation, and the osteogenic and chondrogenic capacity of these cells are important factors that will influence its selection for tissue engineering. Furthermore, appropriate cell proliferation and differentiation of these cells is also key for the optimal repair of osteochondral defects. The development of bioreactors has enhanced methods to stimulate the proliferation and differentiation of cells. In this review, we summarize the recent advances in tissue engineering, including the development of layered scaffolds, cells, and bioreactors that have changed the approach towards the development of novel treatments for osteochondral repair.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yang, J., Zhang, Y. S., Yue, K., & Khademhosseini, A. (2017). Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomaterialia, 57, 1–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen, D., Shen, J., Zhao, W., Wang, T., Han, L., Hamilton, J. L., & Im, H. (2017). Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Research, 5(1), 1–13.

    Article  CAS  Google Scholar 

  3. Makris, E. A., Gomoll, A. H., Malizos, K. N., Hu, J. C., & Athanasiou, K. A. (2015). Repair and tissue engineering techniques for articular cartilage. Nature Reviews Rheumatology, 11(21–34), 1.

    Google Scholar 

  4. Kraeutler, M. J., Belk, J. W., Purcell, J. M., & McCarty, E. C. (2018). Microfracture versus autologous chondrocyte implantation for articular cartilage lesions in the knee: a systematic review of 5-year outcomes. The American Journal of Sports Medicine, 46(4), 995–999.

    Article  PubMed  Google Scholar 

  5. Jo, C. H., Lee, Y. G., Shin, W. H., Kim, H., Chai, J. W., Jeong, E. C., Kim, J. E., Shim, H., Shin, J. S., Shin, I. S., Ra, J. C., Oh, S., & Yoon, K. S. (2014). Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells, 32(5), 1254–1266.

    Article  CAS  PubMed  Google Scholar 

  6. Goldberg, A., Mitchell, K., Soans, J., Kim, L., & Zaidi, R. (2017). The use of mesenchymal stem cells for cartilage repair and regeneration: a systematic review. Journal of Orthopaedic Surgery and Research, 12(1), 39.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Benders, K. E. M., Weeren, P. R. V., Badylak, S. F., Saris, D. B. F., Dhert, W. J. A., & Malda, J. (2013). Extracellular matrix scaffolds for cartilage and bone regeneration. Trends in Biotechnology, 31(3), 169–176.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, F., & Liu, X. (2016). Advancing biomaterials of human origin for tissue engineering. Progress in Polymer Science, 53, 86–168.

    Article  CAS  PubMed  Google Scholar 

  9. Sadr, K. N., Pulido, P. A., McCauley, J. C., & Bugbee, W. D. (2016). Osteochondral allograft transplantation in patients with osteochondritis dissecans of the knee. The American Journal of Sports Medicine, 44(11), 2870–2875.

    Article  PubMed  Google Scholar 

  10. Frank, R. M., Lee, S., Cotter, E. J., Hannon, C. P., Leroux, T., & Cole, B. J. (2018). Outcomes of osteochondral allograft transplantation with and without concomitant meniscus allograft transplantation: a comparative matched group analysis. The American Journal of Sports Medicine, 46(3), 573–580.

    Article  PubMed  Google Scholar 

  11. McCarty, E. C., Fader, R. R., Mitchell, J. J., Glenn Jr., R. E., Potter, H. G., & Spindler, K. P. (2015). Fresh osteochondral allograft versus autograft: twelve-month results in isolated canine knee defects. The American Journal of Sports Medicine, 44(9), 2354–2365.

    Article  Google Scholar 

  12. Ramponi, L., Yasui, Y., Murawski, C. D., Ferkel, R. D., DiGiovanni, C. W., Kerkhoffs, G. M. M. J., Calder, J. D. F., Takao, M., Vannini, F., Choi, W. J., Lee, J. W., Stone, J., & Kennedy, J. G. (2016). Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. The American Journal of Sports Medicine, 45(7), 1698–1705.

    Article  PubMed  Google Scholar 

  13. Orth, P., Duffner, J., Zurakowski, D., Cucchiarini, M., & Madry, H. (2016). Small-diameter awls improve articular cartilage repair after microfracture treatment in a translational animal model. The American Journal of Sports Medicine, 44(1), 209–219.

    Article  PubMed  Google Scholar 

  14. Green Jr., W. T. (1977). Articular cartilage repair Behavior of rabbit chondrocytes during tissue culture and subsequent allografting. Clinical Orthopaedics and Related Research, 124, 237–250.

    CAS  Google Scholar 

  15. Pina, S., Oliveira, J. M., & Reis, R. L. (2015). Natural-based nanocomposites for bone tissue engineering and regenerative medicine: a review. Advanced Materials, 27(7), 1143–1169.

    Article  CAS  PubMed  Google Scholar 

  16. Raphel, J., Holodniy, M., Goodman, S. B., & Heilshorn, S. C. (2016). Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials, 84, 301–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lu, Y., Aimetti, A. A., Langer, R., & Gu, Z. (2017). Bioresponsive materials. Nature Reviews Materials, 2(1), 16075.

    Article  CAS  Google Scholar 

  18. Castro, N. J., Brien, J. O., & Zhang, L. G. (2015). Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds. Nanoscale, 7(33), 14010–14022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Loebel, C., & Burdick, J. A. (2018). Engineering stem and stromal cell therapies for musculoskeletal tissue repair. Cell Stem Cell, 22(3), 325–339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lee, H., Gu, L., Mooney, D. J., Levenston, M. E., & Chaudhuri, O. (2017). Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nature Materials, 16(12), 1243–1251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Pati, F., Jang, J., Ha, D., Won Kim, S., Rhie, J., Shim, J., Kim, D., & Cho, D. (2014). Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nature Communications, 5, 3935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yin, X., Mead, B. E., Safaee, H., Langer, R., Karp, J. M., & Levy, O. (2016). Stem cell engineering organoids. Cell Stem Cell, 18(1), 25–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Leijten, J., & Khademhosseini, A. (2016). From nano to macro: multiscale materials for improved stem cell culturing and analysis. Cell Stem Cell, 18(1), 20–24.

    Article  CAS  PubMed  Google Scholar 

  24. Rando, T. A., & Ambrosio, F. (2018). Regenerative rehabilitation: applied biophysics meets stem cell therapeutics. Cell Stem Cell, 22(3), 306–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Luciani, N., Du, V., Gazeau, F., Richert, A., Letourneur, D., Le Visage, C., & Wilhelm, C. (2016). Successful chondrogenesis within scaffolds, using magnetic stem cell confinement and bioreactor maturation. Acta Biomaterialia, 37, 101–110.

    Article  CAS  PubMed  Google Scholar 

  26. Madl, C. M., Heilshorn, S. C., & Blau, H. M. (2018). Bioengineering strategies to accelerate stem cell therapeutics. Nature, 557(7705), 335–342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao, Z., Fang, R., Rong, Q., & Liu, M. (2017). Bioinspired nanocomposite hydrogels with highly ordered structures. Advanced Materials, 29(45), 1703045.

    Article  CAS  Google Scholar 

  28. Hardin, J. A., Cobelli, N., & Santambrogio, L. (2015). Consequences of metabolic and oxidative modifications of cartilage tissue. Nature Reviews Rheumatology, 11(9), 521–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Camarero-Espinosa, S., Rothen-Rutishauser, B., Foster, E. J., & Weder, C. (2016). Articular cartilage: from formation to tissue engineering. Biomaterials Science, 4(5), 734–767.

    Article  CAS  PubMed  Google Scholar 

  30. Pintus, E., Baldassarri, M., Perazzo, L., Natali, S., Ghinelli, D., & Buda, R. (2018). Stem cells in osteochondral tissue engineering. Advances in Experimental Medicine and Biology, 1058, 359–372.

    Article  CAS  PubMed  Google Scholar 

  31. Matsiko, A., Levingstone, T., & O'Brien, F. (2013). Advanced strategies for articular cartilage defect repair. Materials, 6(2), 637–668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu, M., Zeng, X., Ma, C., Yi, H., Ali, Z., Mou, X., Li, S., Deng, Y., & He, N. (2017). Injectable hydrogels for cartilage and bone tissue engineering. Bone Research, 5, 17014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Atesok, K., Doral, M. N., Karlsson, J., Egol, K. A., Jazrawi, L. M., Coelho, P. G., Martinez, A., Matsumoto, T., Owens, B. D., Ochi, M., Hurwitz, S. R., Atala, A., Fu, F. H., Lu, H. H., & Rodeo, S. A. (2016). Multilayer scaffolds in orthopaedic tissue engineering. Knee Surgery, Sports Traumatology, Arthroscopy, 24(7), 2365–2373.

    Article  PubMed  Google Scholar 

  34. Gadjanski, I., & Vunjak-Novakovic, G. (2015). Challenges in engineering osteochondral tissue grafts with hierarchical structures. Expert Opinion on Biological Therapy, 15(11), 1583–1599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Nukavarapu, S. P., & Dorcemus, D. L. (2013). Osteochondral tissue engineering: Current strategies and challenges. Biotechnology Advances, 31(5), 706–721.

    Article  CAS  PubMed  Google Scholar 

  36. Fong, E. L. S., Watson, B. M., Kasper, F. K., & Mikos, A. G. (2012). Building bridges: leveraging interdisciplinary collaborations in the development of biomaterials to meet clinical needs. Advanced Materials, 24(36), 4995–5013.

    Article  CAS  PubMed  Google Scholar 

  37. Findlay, D. M., & Kuliwaba, J. S. (2016). Bone–cartilage crosstalk: a conversation for understanding osteoarthritis. Bone Research, 4, 16028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mathiessen, A., & Conaghan, P. G. (2017). Synovitis in osteoarthritis: current understanding with therapeutic implications. Arthritis Research & Therapy, 19(1), 18.

    Article  CAS  Google Scholar 

  39. Di Luca, A., Van Blitterswijk, C., & Moroni, L. (2015). The osteochondral interface as a gradient tissue: From development to the fabrication of gradient scaffolds for regenerative medicine. Birth Defects Research Part C: Embryo Today: Reviews, 105(1), 34–52.

    Article  CAS  Google Scholar 

  40. Mohan, N., Gupta, V., Sridharan, B., Sutherland, A., & Detamore, M. S. (2014). The potential of encapsulating “raw materials” in 3D osteochondral gradient scaffolds. Biotechnology and Bioengineering, 111(4), 829–841.

    Article  CAS  PubMed  Google Scholar 

  41. Mellati, A., Fan, C., Tamayol, A., Annabi, N., Dai, S., Bi, J., **, B., **an, C., Khademhosseini, A., & Zhang, H. (2017). Microengineered 3D cell-laden thermoresponsive hydrogels for mimicking cell morphology and orientation in cartilage tissue engineering. Biotechnology and Bioengineering, 114(1), 217–231.

    Article  CAS  PubMed  Google Scholar 

  42. Deliormanlı, A. M., & Atmaca, H. (2018). Biological response of osteoblastic and chondrogenic cells to graphene-containing PCL/bioactive glass bilayered scaffolds for osteochondral tissue engineering applications. Applied Biochemistry and Biotechnology, 186(4), 972–989.

    Article  PubMed  CAS  Google Scholar 

  43. Lin, X., Chen, J., Qiu, P., Zhang, Q., Wang, S., Su, M., Chen, Y., **, K., Qin, A., Fan, S., Chen, P., & Zhao, X. (2017). Biphasic hierarchical extracellular matrix scaffold for osteochondral defect regeneration. Osteoarthritis and Cartilage, 26(3), 433–444.

    Article  PubMed  Google Scholar 

  44. Liao, J., Tian, T., Shi, S., **e, X., Ma, Q., Li, G., & Lin, Y. (2017). The fabrication of biomimetic biphasic CAN-PAC hydrogel with a seamless interfacial layer applied in osteochondral defect repair. Bone Research, 5, 17018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Huang, J., Liu, W., Liang, Y., Li, L., Duan, L., Chen, J., Zhu, F., Lai, Y., Zhu, W., You, W., Jia, Z., **ong, J., & Wang, D. (2018). Preparation and biocompatibility of diphasic magnetic nanocomposite scaffold. Materials Science and Engineering: C, 87, 70–77.

    Article  CAS  Google Scholar 

  46. Steinmetz, N. J., Aisenbrey, E. A., Westbrook, K. K., Qi, H. J., & Bryant, S. J. (2015). Mechanical loading regulates human MSC differentiation in a multi-layer hydrogel for osteochondral tissue engineering. Acta Biomaterialia, 21, 142–153.

    Article  CAS  PubMed  Google Scholar 

  47. Hu, X., Wang, Y., Tan, Y., Wang, J., Liu, H., Wang, Y., Yang, S., Shi, M., Zhao, S., Zhang, Y., & Yuan, Q. (2017). A difunctional regeneration scaffold for knee repair based on aptamer-directed cell recruitment. Advanced Materials, 29(15), 1605235.

    Article  CAS  Google Scholar 

  48. Sartori, M., Pagani, S., Ferrari, A., Costa, V., Carina, V., Figallo, E., Maltarello, M. C., Martini, L., Fini, M., & Giavaresi, G. (2017). A new bi-layered scaffold for osteochondral tissue regeneration: in vitro and in vivo preclinical investigations. Materials Science and Engineering: C, 70, 101–111.

    Article  CAS  Google Scholar 

  49. Zhu, C., Pongkitwitoon, S., Qiu, J., Thomopoulos, S., & **a, Y. (2018). Design and fabrication of a hierarchically structured scaffold for tendon-to-bone repair. Advanced Materials, 30(16), 1707306.

    Article  CAS  Google Scholar 

  50. Stuckensen, K., Schwab, A., Knauer, M., Muiños-López, E., Ehlicke, F., Reboredo, J., Granero-Moltó, F., Gbureck, U., Prósper, F., Walles, H., & Groll, J. (2018). Tissue mimicry in morphology and composition promotes hierarchical matrix remodeling of invading stem cells in osteochondral and meniscus scaffolds. Advanced Materials, 30(28), 1706754.

    Article  CAS  Google Scholar 

  51. Levingstone, T. J., Thompson, E., Matsiko, A., Schepens, A., Gleeson, J. P., & O’Brien, F. J. (2016). Multi-layered collagen-based scaffolds for osteochondral defect repair in rabbits. Acta Biomaterialia, 32, 149–160.

    Article  CAS  PubMed  Google Scholar 

  52. Guo, J., Li, C., Ling, S., Huang, W., Chen, Y., & Kaplan, D. L. (2017). Multiscale design and synthesis of biomimetic gradient protein/biosilica composites for interfacial tissue engineering. Biomaterials, 145, 44–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ding, X., Zhu, M., Xu, B., Zhang, J., Zhao, Y., Ji, S., Wang, L., Wang, L., Li, X., Kong, D., Ma, X., & Yang, Q. (2014). Integrated trilayered silk fibroin scaffold for osteochondral differentiation of adipose-derived stem cells. ACS Applied Materials & Interfaces, 6(19), 16696–16705.

    Article  CAS  Google Scholar 

  54. Camarero-Espinosa, S., Rothen-Rutishauser, B., Weder, C., & Foster, E. J. (2016). Directed cell growth in multi-zonal scaffolds for cartilage tissue engineering. Biomaterials, 74, 42–52.

    Article  CAS  PubMed  Google Scholar 

  55. Liu, X., Liu, S., Liu, S., & Cu, W. (2014). Evaluation of oriented electrospun fibers for periosteal flap regeneration in biomimetic triphasic osteochondral implant. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 102(7), 1407–1414.

    Article  CAS  Google Scholar 

  56. Levingstone, T. J., Matsiko, A., Dickson, G. R., O’Brien, F. J., & Gleeson, J. P. (2014). A biomimetic multi-layered collagen-based scaffold for osteochondral repair. Acta Biomaterialia, 10(5), 1996–2004.

    Article  CAS  PubMed  Google Scholar 

  57. Du, Y., Liu, H., Yang, Q., Wang, S., Wang, J., Ma, J., Noh, I., Mikos, A. G., & Zhang, S. (2017). Selective laser sintering scaffold with hierarchical architecture and gradient composition for osteochondral repair in rabbits. Biomaterials, 137, 37–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mohan, N., Dormer, N. H., Caldwell, K. L., Key, V. H., Berkland, C. J., & Detamore, M. S. (2011). Continuous gradients of material composition and growth factors for effective regeneration of the osteochondral interface. Tissue Engineering Part A, 17(21–22), 2845–2855.

    Article  CAS  PubMed  Google Scholar 

  59. Doornberg, J., Ring, D., & Jupiter, J. B. (2004). Effective treatment of fracture-dislocations of the olecranon requires a stable trochlear notch. Clinical Orthopaedics and Related Research, 429, 292–300.

    Article  Google Scholar 

  60. Madeira, C., Santhagunam, A., Salgueiro, J. B., & Cabral, J. M. S. (2015). Advanced cell therapies for articular cartilage regeneration. Trends in Biotechnology, 33(1), 35–42.

    Article  CAS  PubMed  Google Scholar 

  61. Vinatier, C., Mrugala, D., Jorgensen, C., Guicheux, J., & Noël, D. (2009). Cartilage engineering: a crucial combination of cells, biomaterials and biofactors. Trends in Biotechnology, 27(5), 307–314.

    Article  CAS  PubMed  Google Scholar 

  62. Garcia, J., Mennan, C., McCarthy, H. S., Roberts, S., Richardson, J. B., & Wright, K. T. (2016). Chondrogenic potency analyses of donor-matched chondrocytes and mesenchymal stem cells derived from bone marrow, infrapatellar fat pad, and subcutaneous fat. Stem Cells International, 2016, 1–11.

    Article  CAS  Google Scholar 

  63. Gobbi, A., Chaurasia, S., Karnatzikos, G., & Nakamura, N. (2014). Matrix-induced autologous chondrocyte implantation versus multipotent stem cells for the treatment of large patellofemoral chondral lesions. Cartilage, 6(2), 82–97.

    Article  CAS  Google Scholar 

  64. de Windt, T. S., Vonk, L. A., Buskermolen, J. K., Visser, J., Karperien, M., Bleys, R. L. A. W., Dhert, W. J. A., & Saris, D. B. F. (2015). Arthroscopic airbrush assisted cell implantation for cartilage repair in the knee: a controlled laboratory and human cadaveric study. Osteoarthritis and Cartilage, 23(1), 143–150.

    Article  PubMed  Google Scholar 

  65. Bartz, C., Meixner, M., Giesemann, P., Roël, G., Bulwin, G., & Smink, J. J. (2016). An ex vivo human cartilage repair model to evaluate the potency of a cartilage cell transplant. Journal of Translational Medicine, 14(1), 317.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Jiang, Y., Cai, Y., Zhang, W., Yin, Z., Hu, C., Tong, T., Lu, P., Zhang, S., Neculai, D., Tuan, R. S., & Ouyang, H. W. (2016). Human cartilage-derived progenitor cells from committed chondrocytes for efficient cartilage repair and regeneration. Stem Cells Translational Medicine, 5(6), 733–744.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Itokazu, M., Wakitani, S., Mera, H., Tamamura, Y., Sato, Y., Takagi, M., & Nakamura, H. (2016). Transplantation of scaffold-free cartilage-like cell-sheets made from human bone marrow mesenchymal stem cells for cartilage repair. Cartilage, 7(4), 361–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Vanlauwe, J. J. E., Claes, T., Van Assche, D., Bellemans, J., & Luyten, F. P. (2012). Characterized chondrocyte implantation in the Patellofemoral joint. The American Journal of Sports Medicine, 40(8), 1799–1807.

    Article  PubMed  Google Scholar 

  69. Robla Costales, D., Junquera, L., García Pérez, E., Gómez Llames, S., Álvarez-Viejo, M., & Meana-Infiesta, Á. (2016). Ectopic bone formation during tissue-engineered cartilage repair using autologous chondrocytes and novel plasma-derived albumin scaffolds. Journal of Cranio-Maxillofacial Surgery, 44(10), 1743–1749.

    Article  PubMed  Google Scholar 

  70. Choi, S., Kim, G. M., Maeng, Y. H., Kang, H., Teong, C. T., Lee, E. E., Yoo, S. J., Dlima, D. D., & Kim, M. K. (2017). Autologous bone marrow cell stimulation and allogenic chondrocyte implantation for the repair of full-thickness articular cartilage defects in a rabbit model. Cartilage, 9(4), 402–409.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Bardsley, K., Kwarciak, A., Freeman, C., Brook, I., Hatton, P., & Crawford, A. (2017). Repair of bone defects in vivo using tissue engineered hypertrophic cartilage grafts produced from nasal chondrocytes. Biomaterials, 112, 313–323.

    Article  CAS  PubMed  Google Scholar 

  72. Kagimoto, S., Takebe, T., Kobayashi, S., Yabuki, Y., Hori, A., Hirotomi, K., Mikami, T., Uemura, T., Maegawa, J., & Taniguchi, H. (2016). Autotransplantation of monkey ear perichondrium-derived progenitor cells for cartilage reconstruction. Cell Transplantation, 25(5), 951–962.

    Article  PubMed  Google Scholar 

  73. Ando, K., Shibata, E., Hans, S., Brand, M., & Kawakami, A. (2017). Osteoblast production by reserved progenitor cells in zebrafish bone regeneration and maintenance. Developmental Cell, 43(5), 643–650.e3.

    Article  CAS  PubMed  Google Scholar 

  74. Yu, Y., Brouillette, M. J., Seol, D., Zheng, H., Buckwalter, J. A., & Martin, J. A. (2015). Use of recombinant human stromal cell-derived factor 1α-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of full-thickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis & Rheumatology, 67(5), 1274–1285.

    Article  CAS  Google Scholar 

  75. Song, K., Kong, Q., Li, L., Wang, Y., Parungao, R., Zheng, S., Nie, Y., Jiao, Z., Wang, H., & Liu, T. (2019). In vitro fabrication and biocompatibility assay of a biomimetic osteoblastic niche. Applied Biochemistry and Biotechnology, 189(2), 471–484.

    Article  CAS  PubMed  Google Scholar 

  76. Zhang, W., Ouyang, H., Dass, C. R., & Xu, J. (2016). Current research on pharmacologic and regenerative therapies for osteoarthritis. Bone Research, 4, 15040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. vanVelthoven, C. T. J., & Rando, T. A. (2019). Stem cell quiescence: dynamism, restraint, and cellular idling. Cell Stem Cell, 24(2), 213–225.

    Article  CAS  Google Scholar 

  78. Keshtkar, S., Azarpira, N., & Ghahremani, M. H. (2018). Mesenchymal stem cell-derived extracellular vesicles: novel frontiers in regenerative medicine. Stem Cell Research & Therapy, 9(1), 63.

    Article  CAS  Google Scholar 

  79. Xu, S., Liu, H., **e, Y., Sang, L., Liu, J., & Chen, B. (2015). Effect of mesenchymal stromal cells for articular cartilage degeneration treatment: a meta-analysis. Cytotherapy, 17(10), 1342–1352.

    Article  CAS  PubMed  Google Scholar 

  80. Tichy, E. D., & Mourkioti, F. (2018). Human skeletal stem cells: the markers provide some clues in the hunt for hidden treasure. Cell Stem Cell, 23(4), 462–463.

    Article  CAS  PubMed  Google Scholar 

  81. Fernandes, G., & Yang, S. (2016). Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering. Bone Research, 4, 16036.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Park, Y. B., Ha, C. W., Lee, C. H., Yoon, Y. C., & Park, Y. G. (2017). Cartilage regeneration in osteoarthritic patients by a composite of allogeneic umbilical cord blood-derived mesenchymal stem cells and hyaluronate hydrogel: Results from a clinical trial for safety and proof-of-concept with 7 years of extended follow-up. Stem Cells Translational Medicine, 6(2), 613–621.

    Article  CAS  PubMed  Google Scholar 

  83. Mehrabani, D., Mojtahed Jaberi, F., Zakerinia, M., Hadianfard, M. J., Jalli, R., Tanideh, N., & Zare, S. (2016). The healing effect of bone marrow-derived stem cells in knee osteoarthritis: a case report. World Journal of Plastic Surgery, 5(2), 168–174.

    PubMed  PubMed Central  Google Scholar 

  84. Shimomura, K., Yasui, Y., Koizumi, K., Chijimatsu, R., Hart, D. A., Yonetani, Y., Ando, W., Nishii, T., Kanamoto, T., Horibe, S., Yoshikawa, H., Nakamura, N., Sakaue, M., Sugita, N., & Moriguchi, Y. (2017). First-in-human pilot study of implantation of a scaffold-free tissue-engineered construct generated from autologous synovial mesenchymal stem cells for repair of knee chondral lesions. The American Journal of Sports Medicine, 46(10), 2384–2393.

    Article  Google Scholar 

  85. Mendes, L. F., Katagiri, H., Tam, W. L., Chai, Y. C., Geris, L., Roberts, S. J., & Luyten, F. P. (2018). Advancing osteochondral tissue engineering: bone morphogenetic protein, transforming growth factor, and fibroblast growth factor signaling drive ordered differentiation of periosteal cells resulting in stable cartilage and bone formation in vivo. Stem Cell Research & Therapy, 9(1), 42.

    Article  CAS  Google Scholar 

  86. Horner, A., Kemp, P., Summers, C., Bord, S., Bishop, N. J., Kelsall, A. W., Coleman, N., & Compston, J. E. (1998). Expression and distribution of transforming growth factor-β isoforms and their signaling receptors in growing human bone. Bone, 23(2), 95–102.

    Article  CAS  PubMed  Google Scholar 

  87. Chen, M. J., Whiteley, J. P., Please, C. P., Ehlicke, F., Waters, S. L., & Byrne, H. M. (2019). Identifying chondrogenesis strategies for tissue engineering of articular cartilage. Journal of Tissue Engineering, 10, 204173141984243.

    Article  CAS  Google Scholar 

  88. Chen, L., Shi, Y., Zhang, X., Hu, X., Shao, Z., Dai, L., Ju, X., Ao, Y., & Wang, J. (2019). CaAlg hydrogel containing bone morphogenetic protein 4-enhanced adipose-derived stem cells combined with osteochondral mosaicplasty facilitated the repair of large osteochondral defects. Knee Surgery, Sports Traumatology, Arthroscopy, 27(11), 3668–3678.

    Article  PubMed  Google Scholar 

  89. Jia, Z., Liu, Q., Liang, Y., Li, X., Xu, X., Ouyang, K., **ong, J., Wang, D., & Duan, L. (2018). Repair of articular cartilage defects with intra-articular injection of autologous rabbit synovial fluid-derived mesenchymal stem cells. Journal of Translational Medicine, 16(1), 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Choi, W. H., Kim, H. R., Lee, S. J., Jeong, N., Park, S. R., Choi, B. H., & Min, B. (2016). Fetal cartilage-derived cells have stem cell properties and are a highly potent cell source for cartilage regeneration. Cell Transplantation, 25(3), 449–461.

    Article  PubMed  Google Scholar 

  91. Lazarus, H. M., Haynesworth, S. E., Gerson, S. L., Rosenthal, N. S., & Caplan, A. I. (1995). Ex vivo expansion and subsequent infusion of human bone marrow-derived stromal progenitor cells (mesenchymal progenitor cells): Implications for therapeutic use. Bone Marrow Transplantation, 16(4), 557–564.

    CAS  PubMed  Google Scholar 

  92. Sugaya, H., Mishima, H., Gao, R., Kaul, S. C., Wadhwa, R., Aoto, K., Li, M., Yoshioka, T., Ogawa, T., Ochiai, N., & Yamazaki, M. (2016). Fate of bone marrow mesenchymal stromal cells following autologous transplantation in a rabbit model of osteonecrosis. Cytotherapy, 18(2), 198–204.

    Article  PubMed  Google Scholar 

  93. Wei, X., Liu, B., Liu, G., Yang, F., Cao, F., Dou, X., Yu, W., Wang, B., Zheng, G., Cheng, L., Ma, Z., Zhang, Y., Yang, J., Wang, Z., Li, J., Cui, D., Wang, W., **e, H., Li, L., Zhang, F., Lineaweaver, W. C., & Zhao, D. (2019). Mesenchymal stem cell-loaded porous tantalum integrated with biomimetic 3D collagen-based scaffold to repair large osteochondral defects in goats. Stem Cell Research & Therapy, 10(1), 72.

    Article  CAS  Google Scholar 

  94. Vangsness, C. T., Farr, J., Boyd, J., Dellaero, D. T., Mills, C. R., & LeRoux-Williams, M. (2014). Adult human mesenchymal stem cells delivered via intra-articular injection to the knee following partial medial meniscectomy. The Journal of Bone and Joint Surgery-American Volume, 96(2), 90–98.

    Article  PubMed  Google Scholar 

  95. Vega, A., Martín-Ferrero, M. A., Del Canto, F., Alberca, M., García, V., Munar, A., Orozco, L., Soler, R., Fuertes, J. J., Huguet, M., Sánchez, A., & García-Sancho, J. (2015). Treatment of knee osteoarthritis with allogeneic bone marrow mesenchymal stem cells. Transplantation, 99(8), 1681–1690.

    Article  CAS  PubMed  Google Scholar 

  96. Enea, D., Cecconi, S., Calcagno, S., Busilacchi, A., Manzotti, S., & Gigante, A. (2015). One-step cartilage repair in the knee: collagen-covered microfracture and autologous bone marrow concentrate. A pilot study. The Knee, 22(1), 30–35.

    Article  CAS  PubMed  Google Scholar 

  97. Kamei, N., Ochi, M., Adachi, N., Ishikawa, M., Yanada, S., Levin, L. S., Kamei, G., & Kobayashi, T. (2018). The safety and efficacy of magnetic targeting using autologous mesenchymal stem cells for cartilage repair. Knee Surgery, Sports Traumatology, Arthroscopy, 26(12), 3626–3635.

    Article  PubMed  Google Scholar 

  98. Gibson, J., O'Sullivan, M., Alaee, F., Paglia, D., Yoshida, R., & Drissi, H. (2017). Regeneration of articular cartilage by human esc-derived mesenchymal progenitors treated sequentially with BMP-2 and Wnt5a. Stem Cells Translational Medicine, 6(1), 40–50.

    Article  CAS  PubMed  Google Scholar 

  99. Davatchi, F., Sadeghi Abdollahi, B., Mohyeddin, M., & Nikbin, B. (2016). Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. International Journal of Rheumatic Diseases, 19(3), 219–225.

    Article  PubMed  Google Scholar 

  100. Jiang, T., Xu, G., Wang, Q., Yang, L., Zheng, L., Zhao, J., & Zhang, X. (2017). In vitro expansion impaired the stemness of early passage mesenchymal stem cells for treatment of cartilage defects. Cell Death & Disease, 8(6), e2851.

    Article  CAS  Google Scholar 

  101. Bosetti, M., Borrone, A., Follenzi, A., Messaggio, F., Tremolada, C., & Cannas, M. (2016). Human lipoaspirate as autologous injectable active scaffold for one-step repair of cartilage defects. Cell Transplantation, 25(6), 1043–1056.

    Article  PubMed  Google Scholar 

  102. Freitag, J., Shah, K., Wickham, J., Boyd, R., & Tenen, A. (2017). The effect of autologous adipose derived mesenchymal stem cell therapy in the treatment of a large osteochondral defect of the knee following unsuccessful surgical intervention of osteochondritis dissecans-a case study. BMC Musculoskeletal Disorders, 18(1), 298.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Perdisa, F., Gostyńska, N., Roffi, A., Filardo, G., Marcacci, M., & Kon, E. (2015). Adipose-derived mesenchymal stem cells for the treatment of articular cartilage: a systematic review on preclinical and clinical evidence. Stem Cells International, 2015, 1–13.

    Article  Google Scholar 

  104. Bernhard, J., Ferguson, J., Rieder, B., Heimel, P., Nau, T., Tangl, S., Redl, H., & Vunjak-Novakovic, G. (2017). Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair. Biomaterials, 139, 202–212.

    Article  CAS  PubMed  Google Scholar 

  105. de Windt, T. S., Vonk, L. A., Slaper-Cortenbach, I., Nizak, R., van Rijen, M., & Saris, D. (2017). Allogeneic MSCs and recycled autologous chondrons mixed in a one-stage cartilage cell transplantion: A first-in-man trial in 35 patients. Stem Cells, 35(8), 1984–1993.

    Article  PubMed  CAS  Google Scholar 

  106. Tsumaki, N., Okada, M., & Yamashita, A. (2015). iPS cell technologies and cartilage regeneration. Bone, 70, 48–54.

    Article  CAS  PubMed  Google Scholar 

  107. Zhu, Y., Wu, X., Liang, Y., Gu, H., Song, K., Zou, X., & Zhou, G. (2016). Repair of cartilage defects in osteoarthritis rats with induced pluripotent stem cell derived chondrocytes. BMC Biotechnology, 16(1), 78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Guzzo, R. M., Sullivan, O., & M. B. (2016). Human pluripotent stem cells: advances in chondrogenic differentiation and articular cartilage regeneration. Current Molecular Biology Reports, 2(3), 113–122.

    Article  Google Scholar 

  109. Trounson, A., & DeWitt, N. D. (2016). Pluripotent stem cells progressing to the clinic. Nature Reviews Molecular Cell Biology, 17(3), 194–200.

    Article  CAS  PubMed  Google Scholar 

  110. Liu, H., Ding, J., Wang, C., Wang, J., Wang, Y., Yang, M., Jia, Y., Zhang, Y., Chang, F., Li, R., & Chen, X. (2015). Intra-articular transplantation of allogeneic BMMSCs rehabilitates cartilage injury of antigen-induced arthritis. Tissue Engineering Part A, 21(21–22), 2733–2743.

    Article  CAS  PubMed  Google Scholar 

  111. Spakova, T., Amrichova, J., Plsikova, J., Harvanova, D., Hornak, S., Ledecky, V., & Rosocha, J. (2017). A preliminary study comparing microfracture and local adherent transplantation of autologous adipose-derived stem cells followed by intraarticular injection of platelet-rich plasma for the treatment of chondral defects in rabbits. Cartilage, 9(4), 410–416.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Mehrabani, D., Babazadeh, M., Tanideh, N., Zare, S., Hoseinzadeh, S., Torabinejad, S., & Koohi-Hosseinabadi, O. (2015). The healing effect of adipose-derived mesenchymal stem cells in full-thickness femoral articular cartilage defects of rabbit. International Journal of Organ Transplantation Medicine, 6(4), 165.

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Sekiya, I., Muneta, T., Horie, M., & Koga, H. (2015). Arthroscopic transplantation of synovial stem cells improves clinical outcomes in knees with cartilage defects. Clinical Orthopaedics and Related Research, 473(7), 2316–2326.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Latief, N., Raza, F. A., Bhatti, F., Tarar, M. N., Khan, S. N., & Riazuddin, S. (2016). Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis. Cell Biology International, 40(5), 579–588.

    Article  CAS  PubMed  Google Scholar 

  115. Hindle, P., Baily, J., Khan, N., Biant, L. C., Simpson, A. H. R., & Péault, B. (2016). Perivascular mesenchymal stem cells in sheep: characterization and autologous transplantation in a model of articular cartilage repair. Stem Cells and Development, 25(21), 1659–1669.

    Article  CAS  PubMed  Google Scholar 

  116. Şafak, A. S., Avşar Abdik, E., Abdik, H., Taşlı, P. N., & Şahin, F. (2019). A novel approach to septal perforation repair: septal cartilage cells induce chondrogenesis of hASCs in vitro. Applied Biochemistry and Biotechnology, 188(4), 942–951.

    Article  PubMed  CAS  Google Scholar 

  117. Wang, W., He, N., Feng, C., Liu, V., Zhang, L., Wang, F., He, J., Zhu, T., Wang, S., Qiao, W., Li, S., Zhou, G., Zhang, L., Dai, C., & Cao, W. (2015). Human adipose-derived mesenchymal progenitor cells engraft into rabbit articular cartilage. International Journal of Molecular Sciences, 16(12), 12076–12091.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Freitag, J., Li, D., Wickham, J., Shah, K., & Tenen, A. (2017). Effect of autologous adipose-derived mesenchymal stem cell therapy in the treatment of a post-traumatic chondral defect of the knee. BMJ Case Reports, 2017, 220852.

    Google Scholar 

  119. Kasir, R., Vernekar, V. N., & Laurencin, C. T. (2015). Regenerative engineering of cartilage using adipose-derived stem cells. Regenerative Engineering and Translational Medicine, 1(1–4), 42–49.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Raposio, E., Bonomini, S., & Calderazzi, F. (2016). Isolation of autologous adipose tissue-derived mesenchymal stem cells for bone repair. Orthopaedics & Traumatology, Surgery & Research, 102(7), 909–912.

    Article  CAS  Google Scholar 

  121. Fellows, C. R., Matta, C., Zakany, R., Khan, I. M., & Mobasheri, A. (2016). Adipose, bone marrow and synovial joint-derived mesenchymal stem cells for cartilage repair. Frontiers in Genetics, 7, 213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Fernandes, T. L., Kimura, H. A., Pinheiro, C. C. G., Shimomura, K., Nakamura, N., Ferreira, J. R., Gomoll, A. H., Hernandez, A. J., & Bueno, D. F. (2018). Human synovial mesenchymal stem cells good manufacturing practices for articular cartilage regeneration. Tissue Engineering Part C Methods, 24(12), 709–716.

    Article  PubMed  Google Scholar 

  123. Kondo, S., Muneta, T., Nakagawa, Y., Koga, H., Watanabe, T., Tsuji, K., Sotome, S., Okawa, A., Kiuchi, S., Ono, H., Mizuno, M., & Sekiya, I. (2017). Transplantation of autologous synovial mesenchymal stem cells promotes meniscus regeneration in aged primates. Journal of Orthopaedic Research, 35(6), 1274–1282.

    Article  PubMed  Google Scholar 

  124. Klontzas, M. E., Kenanidis, E. I., Heliotis, M., Tsiridis, E., & Mantalaris, A. (2015). Bone and cartilage regeneration with the use of umbilical cord mesenchymal stem cells. Expert Opinion on Biological Therapy, 15(11), 1541–1552.

    Article  PubMed  CAS  Google Scholar 

  125. Li, X., Duan, L., Liang, Y., Zhu, W., **ong, J., & Wang, D. (2016). Human umbilical cord blood-derived mesenchymal stem cells contribute to chondrogenesis in coculture with chondrocytes. BioMed Research International, 2016, 1–9.

    Google Scholar 

  126. Park, Y. B., Ha, C. W., Kim, J. A., Han, W. J., Rhim, J. H., Lee, H. J., Kim, K. J., Park, Y. G., & Chung, J. Y. (2017). Single-stage cell-based cartilage repair in a rabbit model: cell tracking and in vivo chondrogenesis of human umbilical cord blood-derived mesenchymal stem cells and hyaluronic acid hydrogel composite. Osteoarthritis and Cartilage, 25(4), 570–580.

    Article  CAS  PubMed  Google Scholar 

  127. Desancé, M., Contentin, R., Bertoni, L., Gomez-Leduc, T., Branly, T., Jacquet, S., Betsch, J., Batho, A., Legendre, F., Audigié, F., Galéra, P., & Demoor, M. (2018). Chondrogenic differentiation of defined equine mesenchymal stem cells derived from umbilical cord blood for use in cartilage repair therapy. International Journal of Molecular Sciences, 19(2), 537.

    Article  PubMed Central  CAS  Google Scholar 

  128. Marmotti, A., Mattia, S., Castoldi, F., Barbero, A., Mangiavini, L., Bonasia, D. E., Bruzzone, M., Dettoni, F., Scurati, R., & Peretti, G. M. (2017). Allogeneic umbilical cord-derived mesenchymal stem cells as a potential source for cartilage and bone regeneration: an in vitro study. Stem Cells International, 2017, 2017.

    Article  CAS  Google Scholar 

  129. Li, K., Zhang, C., Qiu, L., Gao, L., & Zhang, X. (2017). Advances in application of mechanical stimuli in bioreactors for cartilage tissue engineering. Tissue Engineering Part B: Reviews, 23(4), 399–411.

    Article  CAS  Google Scholar 

  130. Zhao, J., Griffin, M., Cai, J., Li, S., Bulter, P. E. M., & Kalaskar, D. M. (2016). Bioreactors for tissue engineering: an update. Biochemical Engineering Journal, 109, 268–281.

    Article  CAS  Google Scholar 

  131. Song, K., Li, L., Li, W., Zhu, Y., Jiao, Z., Lim, M., Fang, M., Shi, F., Wang, L., & Liu, T. (2015). Three-dimensional dynamic fabrication of engineered cartilage based on chitosan/gelatin hybrid hydrogel scaffold in a spinner flask with a special designed steel frame. Materials Science and Engineering: C, 55, 384–392.

    Article  CAS  Google Scholar 

  132. Sart, S., Agathos, S. N., Li, Y., & Ma, T. (2016). Regulation of mesenchymal stem cell 3D microenvironment: from macro to microfluidic bioreactors. Biotechnology Journal, 11(1), 43–57.

    Article  CAS  PubMed  Google Scholar 

  133. Rafiq, Q. A., Coopman, K., Nienow, A. W., & Hewitt, C. J. (2016). Systematic microcarrier screening and agitated culture conditions improves human mesenchymal stem cell yield in bioreactors. Biotechnology Journal, 11(4), 473–486.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Song, K., Yang, Y., Xu, L., Tian, J., Fan, J., Jiao, Z., Feng, S., Wang, H., Wang, Y., Wang, L., & Liu, T. (2016). Fabrication and detection of tissue engineered bone aggregates based on encapsulated human ADSCs within hybrid calcium alginate/bone powder gel-beads in a spinner flask. Materials Science and Engineering: C, 62, 787–794.

    Article  CAS  Google Scholar 

  135. Song, K., Li, W., Wang, H., Zhang, Y., Li, L., Wang, Y., Wang, H., Wang, L., & Liu, T. (2016). Development and fabrication of a two-layer tissue engineered osteochondral composite using hybrid hydrogel-cancellous bone scaffolds in a spinner flask. Biomedical Materials, 11(6), 065002.

    Article  PubMed  CAS  Google Scholar 

  136. Sonnaert, M., Papantoniou, I., Bloemen, V., Kerckhofs, G., Luyten, F. P., & Schrooten, J. (2017). Human periosteal-derived cell expansion in a perfusion bioreactor system: proliferation, differentiation and extracellular matrix formation. Journal of Tissue Engineering and Regenerative Medicine, 11(2), 519–530.

    Article  CAS  PubMed  Google Scholar 

  137. Ismadi, M. Z., Gupta, P., Fouras, A., Verma, P., Jadhav, S., Bellare, J., & Hourigan, K. (2014). Flow characterization of a spinner flask for induced pluripotent stem cell culture application. PLoS One, 9(10), 106493.

    Article  CAS  Google Scholar 

  138. Moser, C., Bardsley, K., El Haj, A. J., Alini, M., Stoddart, M. J., & Bara, J. J. (2018). A perfusion culture system for assessing bone marrow stromal cell differentiation on PLGA scaffolds for bone repair. Frontiers in Bioengineering and Biotechnology, 6, 161.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Li, S., Glynne-Jones, P., Andriotis, O. G., Ching, K. Y., Jonnalagadda, U. S., Oreffo, R. O. C., Hill, M., & Tare, R. S. (2014). Application of an acoustofluidic perfusion bioreactor for cartilage tissue engineering. Lab on a Chip, 14(23), 4475–4485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Mitra, D., Whitehead, J., Yasui, O. W., & Leach, J. K. (2017). Bioreactor culture duration of engineered constructs influences bone formation by mesenchymal stem cells. Biomaterials, 146, 29–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Carmona-Moran, C. A., & Wick, T. M. (2015). Transient growth factor stimulation improves chondrogenesis in static culture and under dynamic conditions in a novel shear and perfusion bioreactor. Cellular and Molecular Bioengineering, 8(2), 267–277.

    Article  CAS  Google Scholar 

  142. Zhao, F., van Rietbergen, B., Ito, K., & Hofmann, S. (2018). Flow rates in perfusion bioreactors to maximise mineralisation in bone tissue engineering in vitro. Journal of Biomechanics, 79, 232–237.

    Article  PubMed  Google Scholar 

  143. Bhaskar, B., Owen, R., Bahmaee, H., Rao, P. S., & Reilly, G. C. (2018). Design and assessment of a dynamic perfusion bioreactor for large bone tissue engineering scaffolds. Applied Biochemistry and Biotechnology, 185(2), 555–563.

    Article  CAS  PubMed  Google Scholar 

  144. Hoffmann, W. (2015). Novel perfused compression bioreactor system as an in vitro model to investigate fracture healing. Frontiers in Bioengineering and Biotechnology, 3, 10.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Vetsch, J. R., Betts, D. C., Müller, R., & Hofmann, S. (2017). Flow velocity-driven differentiation of human mesenchymal stromal cells in silk fibroin scaffolds: a combined experimental and computational approach. PLoS One, 12(7), 0180781.

    Article  CAS  Google Scholar 

  146. Daly, A. C., Sathy, B. N., & Kelly, D. J. (2018). Engineering large cartilage tissues using dynamic bioreactor culture at defined oxygen conditions. Journal of Tissue Engineering, 9, 204173141775371.

    Article  CAS  Google Scholar 

  147. Schwarz, R. P., Goodwin, T. J., & Wolf, D. A. (1992). Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. Journal of Tissue Culture Methods, 14(2), 51–57.

    Article  CAS  PubMed  Google Scholar 

  148. Zhang, Y., Wang, X., Pong, M., Chen, L., & Ye, Z. (2017). Application of bioreactor in stem cell culture. Journal of Biomedical Science and Engineering, 10(11), 485–499.

    Article  CAS  Google Scholar 

  149. Zhu, Y., Song, K., Jiang, S., Chen, J., Tang, L., Li, S., Fan, J., Wang, Y., Zhao, J., & Liu, T. (2017). Numerical simulation of mass transfer and three-dimensional fabrication of tissue-engineered cartilages based on chitosan/gelatin hybrid hydrogel scaffold in a rotating bioreactor. Applied Biochemistry and Biotechnology, 181(1), 250–266.

    Article  CAS  PubMed  Google Scholar 

  150. Koç Demir, A., Elçin, A. E., & Elçin, Y. M. (2018). Osteogenic differentiation of encapsulated rat mesenchymal stem cells inside a rotating microgravity bioreactor: in vitro and in vivo evaluation. Cytotechnology, 70(5), 1375–1388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  151. Cerwinka, W. H., Sharp, S. M., Boyan, B. D., Zhau, H. E., Chung, L. W., & Yates, C. (2012). Differentiation of human mesenchymal stem cell spheroids under microgravity conditions. Cell Regeneration, 1(1), 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Varley, M. C., Markaki, A. E., & Brooks, R. A. (2017). Effect of rotation on scaffold motion and cell growth in rotating bioreactors. Tissue Engineering Part A, 23(11–12), 522–534.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. El Haj, A. J., & Cartmell, S. H. (2011). Bioreactors for bone tissue engineering. International Journal of Artificial Organs, 34(3), 259–270.

    Article  CAS  Google Scholar 

  154. Lima, J., Gonçalves, A. I., Rodrigues, M. T., Reis, R. L., & Gomes, M. E. (2015). The effect of magnetic stimulation on the osteogenic and chondrogenic differentiation of human stem cells derived from the adipose tissue (hASCs). Journal of Magnetism and Magnetic Materials, 393, 526–536.

    Article  CAS  Google Scholar 

  155. Yun, H., Ahn, S., Park, K., Kim, M., Kim, J., **, G., Kim, H., & Kim, E. (2016). Magnetic nanocomposite scaffolds combined with static magnetic field in the stimulation of osteoblastic differentiation and bone formation. Biomaterials, 85, 88–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31670978/31370991/21676041), the Fok Ying Tung Education Foundation (132027), the State Key Laboratory of Fine Chemicals (KF1111) and the Natural Science Foundation of Liaoning (20180510028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yi Nie, Tianqing Liu or Kedong Song.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, X., Xu, J., Li, W. et al. Therapeutic “Tool” in Reconstruction and Regeneration of Tissue Engineering for Osteochondral Repair. Appl Biochem Biotechnol 191, 785–809 (2020). https://doi.org/10.1007/s12010-019-03214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-019-03214-8

Keywords

Navigation