Log in

Sodium Homeostasis and Hypertension

  • Ischemic Heart Disease (D Mukherjee, Section Editor)
  • Published:
Current Cardiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to summarize and discuss the relationship between sodium homeostasis and hypertension, including emerging concepts of factors outside cardiovascular and renal systems influencing sodium homeostasis and hypertension.

Recent Findings

Recent studies support the dose–response association between higher sodium and lower potassium intakes and a higher cardiovascular risk in addition to the dose–response relationship between sodium restriction and blood pressure lowering. The growing body of evidence suggests the role of genetic determinants, immune system, and gut microbiota in sodium homeostasis and hypertension.

Summary

Although higher sodium and lower potassium intakes increase cardiovascular risk, salt restriction is beneficial only to a certain limit. The immune system contributes to hypertension through pro-inflammatory effects. Sodium can affect the gut microbiome and induce pro-inflammatory and immune responses that contribute to salt-sensitive hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Rucker AJ, Rudemiller NP, Crowley SD. Salt, hypertension, and immunity. Annu Rev Physiol. 2018;80:283–307. https://doi.org/10.1146/annurev-physiol-021317-121134.

    Article  CAS  PubMed  Google Scholar 

  2. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496(7446):445–55. https://doi.org/10.1038/nature12034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. •• He FJ, Tan M, Ma Y, MacGregor GA. Salt reduction to prevent hypertension and cardiovascular disease: JACC state-of-the-art review. J Am Coll Cardiol. 2020;75(6):632–47. https://doi.org/10.1016/j.jacc.2019.11.055. This recent review provides an update on the evidence relating salt to health, with a particular focus on blood pressure and cardiovascular disease as well as the potential mechanism.

    Article  CAS  PubMed  Google Scholar 

  4. Ellison DH, Welling P. Insights into salt handling and blood pressure. N Engl J Med. 2021;385(21):1981–93. https://doi.org/10.1056/NEJMra2030212.

    Article  CAS  PubMed  Google Scholar 

  5. •• Elijovich F, Laffer CL, Sahinoz M, Pitzer A, Ferguson JF, Kirabo A. The gut microbiome, inflammation, and salt-sensitive hypertension. Curr Hypertens Rep. 2020;22(10):79. https://doi.org/10.1007/s11906-020-01091-9. This recent review provides a discussion of the mechanisms of salt-induced cardiovascular disease as well as how the microbiome may play a role.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Denton D, Weisinger R, Mundy NI, Wickings EJ, Dixson A, Moisson P, et al. The effect of increased salt intake on blood pressure of chimpanzees. Nat Med. 1995;1(10):1009–16. https://doi.org/10.1038/nm1095-1009.

    Article  CAS  PubMed  Google Scholar 

  7. Intersalt Cooperative Research Group. Intersalt: an international study of electrolyte excretion and blood pressure. Results for 24 hour urinary sodium and potassium excretion. BMJ. 1988;297(6644):319–28. https://doi.org/10.1136/bmj.297.6644.319.

  8. Mente A, O’Donnell MJ, Rangarajan S, McQueen MJ, Poirier P, Wielgosz A, et al. Association of urinary sodium and potassium excretion with blood pressure. N Engl J Med. 2014;371(7):601–11. https://doi.org/10.1056/NEJMoa1311989.

    Article  CAS  PubMed  Google Scholar 

  9. Weinberger MH. Salt sensitivity of blood pressure in humans. Hypertension. 1996;27(3 Pt 2):481–90. https://doi.org/10.1161/01.hyp.27.3.481.

    Article  CAS  PubMed  Google Scholar 

  10. •• Aliasgharzadeh S, Tabrizi JS, Nikniaz L, Ebrahimi-Mameghani M, Lofti Yagin N. Effect of salt reduction interventions in lowering blood pressure: a comprehensive systematic review and meta-analysis of controlled clinical trials. 2022;17(12):e0277929. https://doi.org/10.1371/journal.pone.0277929. This recent systematic review analyzes the effect of salt reduction interventions on blood pressures supporting salt substitution and education as effective strategies to lower blood pressure.

  11. •• Filippini T, Malavolti M, Whelton PK, Naska A, Orsini N, Vinceti M. Blood pressure effects of sodium reduction: dose-response meta-analysis of experimental studies. Circulation. 2021;143(16):1542–67. https://doi.org/10.1161/CIRCULATIONAHA.120.050371. This recent meta-analysis of experimental studies describes and supports the linear dose-response analysis of sodium reduction on blood pressure.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. • Huang L, Trieu K, Yoshimura S, Neal B, Woodward M, Campbell NRC, et al. Effect of dose and duration of reduction in dietary sodium on blood pressure levels: systematic review and meta-analysis of randomised trials. BMJ. 2020;368:m315. https://doi.org/10.1136/bmj.m315. This systematic review and meta-analysis examines and further supports the dose-response relationship between dietary sodium reduction and change in blood pressure.

  13. •• Graudal NA, Hubeck-Graudal T, Jurgens G. Effects of low sodium diet versus high sodium diet on blood pressure, renin, aldosterone, catecholamines, cholesterol, and triglyceride. Cochrane Database Syst Rev. 2020;12(12):CD004022. https://doi.org/10.1002/14651858.CD004022.pub5. This recent article assesses the effects of sodium reduction on blood pressure providing quantitative mean arterial pressure reductions in normotensive compared to hypertensive study participants.

  14. World Health Organization. Effect of reduced sodium intake on blood pressure, renal function, blood lipids and other potential adverse effects. World Health Organization. 2012. https://apps.who.int/iris/handle/10665/79325.

  15. He FJ, Li J, Macgregor GA. Effect of longer term modest salt reduction on blood pressure: cochrane systematic review and meta-analysis of randomised trials. BMJ. 2013;346:f1325. https://doi.org/10.1136/bmj.f1325.

  16. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47(2):296–308. https://doi.org/10.1161/01.HYP.0000202568.01167.B6.

    Article  CAS  PubMed  Google Scholar 

  17. Aburto NJ, Ziolkovska A, Hooper L, Elliott P, Cappuccio FP, Meerpohl JJ. Effect of lower sodium intake on health: systematic review and meta-analyses. BMJ. 2013;346:f1326. https://doi.org/10.1136/bmj.f1326.

  18. Wang M, Moran AE, Liu J, Qi Y, **e W, Tzong K, et al. A meta-analysis of effect of dietary salt restriction on blood pressure in Chinese adults. Glob Heart. 2015;10(4):291-299.e6. https://doi.org/10.1016/j.gheart.2014.10.009.

    Article  PubMed  Google Scholar 

  19. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2018;71(19):e127–248. https://doi.org/10.1016/j.jacc.2017.11.006.

    Article  PubMed  Google Scholar 

  20. • Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH guidelines for the management of arterial hypertension. Eur Heart J. 2018;39(33):3021–104. https://doi.org/10.1093/eurheartj/ehy339. This article provides updated evidence-based guidelines for blood pressure management in Europe.

    Article  PubMed  Google Scholar 

  21. •• Rabi DM, McBrien KA, Sapir-Pichhadze R, Nakhla M, Ahmed SB, Dumanski SM, et al. Hypertension Canada’s 2020 comprehensive guidelines for the prevention, diagnosis, risk assessment, and treatment of hypertension in adults and Children. Can J Cardiol. 2020;36(5):596–624. https://doi.org/10.1016/j.cjca.2020.02.086. This recent article provides updated 2020 guidelines on blood pressure management in Canada based on evidence-based hypertension care.

    Article  PubMed  Google Scholar 

  22. Institute of Medicine. Dietary reference intakes for water, potassium, sodium, chloride, and sulfate. Washington, DC: The National Academies Press. 2005. https://doi.org/10.17226/10925.

  23. World Health Organization. Guideline: sodium intake for adults and children. Geneva: World Health Organization. 2012. https://www.ncbi.nlm.nih.gov/books/NBK133292/.

  24. Obarzanek E, Proschan MA, Vollmer WM, Moore TJ, Sacks FM, Appel LJ, et al. Individual blood pressure responses to changes in salt intake: results from the DASH-Sodium trial. Hypertension. 2003;42(4):459–67. https://doi.org/10.1161/01.HYP.0000091267.39066.72.

    Article  CAS  PubMed  Google Scholar 

  25. Sacks FM, Svetkey LP, Vollmer WM, Appel LJ, Bray GA, Harsha D, et al. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N Engl J Med. 2001;344(1):3–10. https://doi.org/10.1056/NEJM200101043440101.

    Article  CAS  PubMed  Google Scholar 

  26. Whelton PK, Appel LJ, Espeland MA, Applegate WB, Ettinger WH Jr, Kostis JB, et al. Sodium reduction and weight loss in the treatment of hypertension in older persons: a randomized controlled trial of nonpharmacologic interventions in the elderly (TONE). JAMA. 1998;279(11):839–46. https://doi.org/10.1001/jama.279.11.839.

    Article  CAS  PubMed  Google Scholar 

  27. •• O’Donnell M, Mente A, Alderman MH, Brady AJB, Diaz R, Gupta R, et al. Salt and cardiovascular disease: insufficient evidence to recommend low sodium intake. Eur Heart J. 2020;41(35):3363–73. https://doi.org/10.1093/eurheartj/ehaa586. This recent review supports an increased risk of cardiovascular disease when sodium intakes exceed 5 grams per day.

    Article  CAS  PubMed  Google Scholar 

  28. Powles J, Fahimi S, Micha R, Khatibzadeh S, Shi P, Ezzati M, et al. Global, regional and national sodium intakes in 1990 and 2010: a systematic analysis of 24 h urinary sodium excretion and dietary surveys worldwide. BMJ Open. 2013;3(12):e003733. https://doi.org/10.1136/bmjopen-2013-003733.

  29. Stolarz-Skrzypek K, Kuznetsova T, Thijs L, Tikhonoff V, Seidlerová J, Richart T, et al. Fatal and nonfatal outcomes, incidence of hypertension, and blood pressure changes in relation to urinary sodium excretion. JAMA. 2011;305(17):1777–85. https://doi.org/10.1001/jama.2011.574.

    Article  CAS  PubMed  Google Scholar 

  30. O’Donnell MJ, Yusuf S, Mente A, Gao P, Mann JF, Teo K, et al. Urinary sodium and potassium excretion and risk of cardiovascular events. JAMA. 2011;306(20):2229–38. https://doi.org/10.1001/jama.2011.1729.

    Article  CAS  PubMed  Google Scholar 

  31. O'Donnell M, Mente A, Rangarajan S, McQueen MJ, O'Leary N, Yin L, et al. Joint association of urinary sodium and potassium excretion with cardiovascular events and mortality: prospective cohort study. BMJ. 2019;364:l772. https://doi.org/10.1136/bmj.l772.

  32. •• Groenland EH, Vendeville JP, Bots ML, de Borst GJ, Nathoe HM, Ruigrok YM, et al. The relation between urinary sodium and potassium excretion and risk of cardiovascular events and mortality in patients with cardiovascular disease. PLoS One. 2022;17(3):e0265429. https://doi.org/10.1371/journal.pone.0265429. This recent article supports the association between sodium intake and a higher risk of recurrent cardiovascular events in patients with established vascular disease.

  33. •• Wuopio J, Ling YT, Orho-Melander M, Engström G, Ärnlöv J. The association between sodium intake and coronary and carotid atherosclerosis in the general Swedish population. Eur Heart J Open. 2023;3(2):oead024. https://doi.org/10.1093/ehjopen/oead024. This study suggests that blood pressure could mediate the interaction between salt intake and atherosclerosis even before the onset of hypertension.

  34. Mente A, O’Donnell M, Rangarajan S, Dagenais G, Lear S, McQueen M, et al. Associations of urinary sodium excretion with cardiovascular events in individuals with and without hypertension: a pooled analysis of data from four studies. Lancet. 2016;388(10043):465–75. https://doi.org/10.1016/S0140-6736(16)30467-6.

    Article  CAS  PubMed  Google Scholar 

  35. Graudal N, Jürgens G, Baslund B, Alderman MH. Compared with usual sodium intake, low- and excessive-sodium diets are associated with increased mortality: a meta-analysis. Am J Hypertens. 2014;27(9):1129–37. https://doi.org/10.1093/ajh/hpu028.

    Article  CAS  PubMed  Google Scholar 

  36. Lerchl K, Rakova N, Dahlmann A, Rauh M, Goller U, Basner M, et al. Agreement between 24-hour salt ingestion and sodium excretion in a controlled environment. Hypertension. 2015;66(4):850–7. https://doi.org/10.1161/HYPERTENSIONAHA.115.05851.

    Article  CAS  PubMed  Google Scholar 

  37. •• Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, et al. 24-hour urinary sodium and potassium excretion and cardiovascular risk. N Engl J Med. 2022;386(3):252–63. https://doi.org/10.1056/NEJMoa2109794. (This article’s findings support the dose-response association between higher sodium and lower potassium intakes and a higher cardiovascular risk.)

    Article  CAS  PubMed  Google Scholar 

  38. Kido M, Ando K, Onozato ML, Tojo A, Yoshikawa M, Ogita T, et al. Protective effect of dietary potassium against vascular injury in salt-sensitive hypertension. Hypertension. 2008;51(2):225–31. https://doi.org/10.1161/HYPERTENSIONAHA.107.098251.

    Article  CAS  PubMed  Google Scholar 

  39. •• Brand A, Visser ME, Schoonees A, Naude CE. Replacing salt with low-sodium salt substitutes (LSSS) for cardiovascular health in adults, children and pregnant women. Cochrane Database Syst Rev. 2022;8(8):CD015207. https://doi.org/10.1002/14651858.CD015207. This recent systematic review supports low sodium salt substitutes probably reduce blood pressure, non-fatal cardiovascular events, and cardiovascular mortality in adults with an increased risk of hyperkalemia.

  40. •• Liu Y, Shi M, Dolan J, He J. Sodium sensitivity of blood pressure in Chinese populations. J Hum Hypertens. 2020;34(2):94–107. https://doi.org/10.1038/s41371-018-0152-0. This article describes the role genetic determinants likely play in salt-sensitive hypertension.

    Article  CAS  PubMed  Google Scholar 

  41. • Mary S, Boder P, Padmanabhan S, McBride MW, Graham D, Delles C, et al. Role of uromodulin in salt-sensitive hypertension. Hypertension. 2022;79(11):2419–29. https://doi.org/10.1161/HYPERTENSIONAHA.122.19888. This article provides example of genetic aberrations associated with the alteration of sodium homeostasis and salt-sensitive hypertension.

    Article  CAS  PubMed  Google Scholar 

  42. • Citterio L, Delli Carpini S, Lupoli S, Brioni E, Simonini M, Fontana S, et al. Klotho gene in human salt-sensitive hypertension. Clin J Am Soc Nephrol. 2020;15(3):375–83. https://doi.org/10.2215/CJN.08620719. This article provides an example of genetic aberrations associated with the alteration of sodium homeostasis and salt-sensitive hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Xu L, Li S, Liu Z, Jiang S, Wang J, Guo M, et al. The NLRP3 rs10754558 polymorphism is a risk factor for preeclampsia in a Chinese Han population. J Matern Fetal Neonatal Med. 2019;32(11):1792–9. https://doi.org/10.1080/14767058.2017.1418313.

    Article  CAS  PubMed  Google Scholar 

  44. • Zhu Q, Hu J, Wang L, Wang W, Wang Z, Li PL, et al. Overexpression of microRNA-429 transgene into the renal medulla attenuated salt-sensitive hypertension in Dahl S Rats. Am J Hypertens. 2021;34(10):1071–7. https://doi.org/10.1093/ajh/hpab089. This article provides an example of genetic aberrations associated with the alteration of sodium homeostasis and salt-sensitive hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. •• Van Beusecum JP, Moreno H, Harrison DG. Innate immunity and clinical hypertension. J Hum Hypertens. 2022;36(6):503–9. https://doi.org/10.1038/s41371-021-00627-z. This review describes how the immune system plays a role in sodium homeostasis and the pathogenesis of hypertension.

    Article  CAS  PubMed  Google Scholar 

  46. Shah KH, Shi P, Giani JF, Janjulia T, Bernstein EA, Li Y, et al. Myeloid suppressor cells accumulate and regulate blood pressure in hypertension. Circ Res. 2015;117(10):858–69. https://doi.org/10.1161/CIRCRESAHA.115.306539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yoshida S, Takeuchi T, Kotani T, Yamamoto N, Hata K, Nagai K, et al. Infliximab, a TNF-α inhibitor, reduces 24-h ambulatory blood pressure in rheumatoid arthritis patients. J Hum Hypertens. 2014;28(3):165–9. https://doi.org/10.1038/jhh.2013.80.

    Article  CAS  PubMed  Google Scholar 

  48. • Makavos G, Ikonomidis I, Andreadou I, Varoudi M, Kapniari I, Loukeri E, et al. Effects of interleukin 17A inhibition on myocardial deformation and vascular function in psoriasis. Can J Cardiol. 2020;36(1):100–11. https://doi.org/10.1016/j.cjca.2019.06.021. This article supports a beneficial effect on overall cardiovascular function following autoimmune disease immunomodulatory therapies.

    Article  PubMed  Google Scholar 

  49. •• Zhang Z, Zhao L, Zhou X, Meng X, Zhou X. Role of inflammation, immunity, and oxidative stress in hypertension: new insights and potential therapeutic targets. Front Immunol. 2023;13:1098725. https://doi.org/10.3389/fimmu.2022.1098725. This recent review provides additional support for the protective role the immune system may play in hypertension.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ferguson JF, Aden LA, Barbaro NR, Van Beusecum JP, **ao L, Simmons AJ, et al. High dietary salt-induced dendritic cell activation underlies microbial dysbiosis-associated hypertension. JCI Insight. 2019;5(13):e126241. https://doi.org/10.1172/jci.insight.126241.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to KoKo Aung.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aung, K., Ream-Winnick, S., Lane, M. et al. Sodium Homeostasis and Hypertension. Curr Cardiol Rep 25, 1123–1129 (2023). https://doi.org/10.1007/s11886-023-01931-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11886-023-01931-5

Keywords

Navigation