Log in

The promoter of fatty acid desaturase on chromosome C5 in Brassica napus drives high-level expression in seeds

  • Original Article
  • Published:
Plant Biotechnology Reports Aims and scope Submit manuscript

Abstract

The gene fatty acid desaturase 2 (FAD2) exists in multiple copies in the Brassica napus genome and encodes an enzyme that catalyzes the conversion of oleic acid to linoleic acid. In the present study, we characterized the regulatory region controlling the expression of an FAD2 gene located on chromosome C5 of Brassica napus and named it BnFAD2-C5. A long intron was found within the 5′-untranslated region (5′-UTR) of the BnFAD2-C5 gene. This intron, compared with an intron-less control, conferred up to a sixfold increase in green fluorescent protein (GFP) expression in transgenic Arabidopsis, thus suggesting that it makes function through intron-mediated enhancement. The sequence containing the promoter and intron was identified to promote high levels of gene expression in genital organs, particularly in seeds, using qRT-PCR and transgenic Arabidopsis. We identified the different promoter regions responsible for the tissue-specific gene expression through a deletion analysis of the BnFAD2-C5 promoter and a β-glucuronidase and GFP reporter system. The results showed that the −1020 to −319 bp region primarily controls BnFAD2-C5 gene expression in the root, whereas the −1020 to −581 bp region controls expression in the stem, the −581 to −319 bp region controls expression in the leaf, and the −1257 to −1020 bp region probably controls expression in the floral parts. The −319 to −1 bp region is also important, conferring high-level transcription in the seeds. The transcription of BnFAD2-C5 could be induced by salicylic acid and jasmonic acid, and the relative response elements were identified in the −1257 to −1020 bp region and −319 to −1 bp region, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • An G (1987) Binary ti vectors for plant transformation and promoter analysis. Methods Enzymol 153:292–305

    Article  CAS  Google Scholar 

  • Baud S, Lepiniec L (2010) Physiological and developmental regulation of seed oil production. Prog Lipid Res 49:235–249

    Article  CAS  PubMed  Google Scholar 

  • Bäumlein H, Miséra S, Luerßen H, Kölle K, Horstmann C, Wobus U, Müller AJ (1994) The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J 6:379–387

    Article  Google Scholar 

  • Beisson F, Koo AJ, Ruuska S, Schwender J, Pollard M, Thelen JJ, Ohlrogge JB (2003) Arabidopsis genes involved in acyl lipid metabolism. A census of the candidates, a study of the distribution of expressed sequence tags in organs, and a web-based database. Plant Physiol 132:681–697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bilyeu KD, Palavalli L, Sleper DA, Beuselinck PR (2003) Three microsomal omega-3 fatty-acid desaturase genes contribute to soybean linolenic acid levels. Crop Sci 43:1833–1838

    Article  CAS  Google Scholar 

  • Bolle C, Herrmann RG, Oelmüller R (1996) Intron sequences are involved in the plastid-and light-dependent expression of the spinach PsaD gene. Plant J 10:919–924

    Article  CAS  PubMed  Google Scholar 

  • Callis J, Fromm M, Walbot V (1987) Introns increase gene expression in cultured maize cells. Genes Dev 1:1183–1200

    Article  CAS  PubMed  Google Scholar 

  • Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Rep 11:113–116

    Article  CAS  Google Scholar 

  • Chen Y, Zhou XR, Zhang ZJ, Dribnenki P, Singh S, Green A (2015) Development of high oleic oil crop platform in flax through RNAi-mediated multiple FAD2 gene silencing. Plant Cell Rep 34:643–653

    Article  CAS  PubMed  Google Scholar 

  • Chung BY, Simons C, Firth AE, Brown CM, Hellens RP (2006) Effect of 5′UTR introns on gene expression in Arabidopsis thaliana. BMC Genom 7:120

    Article  Google Scholar 

  • Clancy M, Hannah LC (2002) Splicing of the maize Sh1 first intron is essential for enhancement of gene expression, and a T-rich motif increases expression without affecting splicing. Plant Physiol 130:918–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Deyholos MK, Sieburth LE (2000) Separable whorl-specific expression and negative regulation by enhancer elements within the AGAMOUS second intron. Plant Cell Online 12:1799–1810

    Article  CAS  Google Scholar 

  • Dong J, Chen C, Chen Z (2003) Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Mol Biol 51:21–37

    Article  CAS  PubMed  Google Scholar 

  • Dzelzkalns VA, Thorsness MK, Dwyer KG, Baxter JS, Balent MA, Nasrallah ME, Nasrallah JB (1993) Distinct cis-acting elements direct pistil-specific and pollen-specific activity of the Brassica S locus glycoprotein gene promoter. Plant Cell 5:855–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eulgem T, Rushton PJ, Robatzek S (2000) The WRKY superfamily of plant transcription factors. Trends Plant Sci 5:199–206

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein R, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell Suppl 14:S15–S45

    CAS  Google Scholar 

  • Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227

    Article  CAS  PubMed  Google Scholar 

  • Gowik U, Burscheidt J, Akyildiz M, Schlue U, Koczor M, Streubel M, Westhoff P (2004) cis-Regulatory elements for mesophyll-specific gene expression in the C4 plant Flaveria trinervia, the promoter of the C4 phosphoenolpyruvate carboxylase gene. Plant Cell 16:1077–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guan M, Li X, Guan C (2012) Microarray analysis of differentially expressed genes between Brassica napus strains with high- and low-oleic acid contents. Plant Cell Rep 31:929–943

    Article  CAS  PubMed  Google Scholar 

  • Heppard EP, Kinney AJ, Stecca KL, Miao GH (1996) Developmental and growth temperature regulation of two different microsomal [omega]–6 desaturase genes in soybeans. Plant Physiol 110:311–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howe GA, Jander G (2008) Plant immunity to insect herbivores. Annu Rev Plant Biol 59:41–66

    Article  CAS  PubMed  Google Scholar 

  • ** UH, Lee JW, Chung YS, Lee JH, Yi YB, KimY K, Chung CH (2001) Characterization and temporal expression of a ω-6 fatty acid desaturase cDNA from sesame (Sesamum indicum L.) seeds. Plant Sci 161:935–941

    Article  CAS  Google Scholar 

  • Jung JH, Kim H, Go YS, Lee SB, Hur CG, Kim HU, Suh MC (2011) Identification of functional BrFAD2-1 gene encoding microsomal delta-12 fatty acid desaturase from Brassica rapa and development of Brassica napus containing high oleic acid contents. Plant Cell Rep 30:1881–1892

    Article  CAS  PubMed  Google Scholar 

  • Kim MJ, Kim H, Shin JS, Chung CH, Ohlrogge JB, Suh MC (2006) Seed-specific expression of sesame microsomal oleic acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5′-UTR intron. Mol Genet Genomics 276:351–368

    Article  CAS  PubMed  Google Scholar 

  • Kusnetsov V, Landsberger M, Meurer J et al (1999) The assembly of the CAAT-box binding complex at a photosynthesis gene promoter is regulated by light, cytokinin, and the stage of the plastids. J Biol Chem 274:36009–36014

    Article  CAS  PubMed  Google Scholar 

  • Lam E, Chua NH (1989) ASF-2: a factor that binds to the cauliflower mosaic virus 35S promoter and a conserved GATA motif in Cab promoters. Plant Cell Online 1:1147–1156

    Article  CAS  Google Scholar 

  • Lee KR, Sohn SI, Jung JH, Kim SH, Roh KH, Kim JB, Kim HU (2013) Functional analysis and tissue-differential expression of four FAD2 genes in amphidiploid Brassica napus derived from Brassica rapa and Brassica oleracea. Gene 531:253–262

    Article  CAS  PubMed  Google Scholar 

  • Lenka SK, Nims NE, Vongpaseuth K, Boshar RA, Roberts SC, Walker EL (2015) Jasmonate-responsive expression of paclitaxel biosynthesis genes in Taxus cuspidata cultured cells is negatively regulated by the bHLH transcription factors TcJAMYC1, TcJAMYC2, and TcJAMYC4. Front Plant Sci 6:115

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Ji X, Nie X, Qu M, Zheng L, Tan Z, Wang Y (2015) Arabidopsis AtbHLH112 regulates the expression of genes involved in abiotic stress tolerance by binding to their E-box and GCG-box motifs. New Phytol 207:692–709

    Article  CAS  PubMed  Google Scholar 

  • Maas C, Laufs J, Grant S et al (1991) The combination of a novel stimulatory element in the first exon of the maize Shrunken-1 gene with the following intron 1 enhances reporter gene expression up to 1000-fold. Plant Mol Biol 16:199–207

    Article  CAS  PubMed  Google Scholar 

  • Maher L, Burton W, Salisbury P, Debonte L, Deng XM (2007) High oleic, low linolenic (HOLL) specialty canola development in Australia. The 12th International Rapeseed Congress, pp 22–24

  • Martínez-Rivas JM, Sperling P, Lühs W, Heinz E (2001) Spatial and temporal regulation of three different microsomal oleate desaturase genes (FAD2) from normal-type and high-oleic varieties of sunflower (Helianthus annuus L.). Mol Breeding 8:159–168

    Article  Google Scholar 

  • Mascarenhas D, Mettler IJ, Pierce DA, Lowe HW (1990) Intron-mediated enhancement of heterologous gene expression in maize. Plant Mol Biol 15:913–920

    Article  CAS  PubMed  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari ZK, Sakuma Y, Furihata T, Abe H, Yamaguchi-Shinozaki K (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  CAS  PubMed  Google Scholar 

  • Park HC, Kim ML, Kang YH et al (2004) Pathogen-and NaCl-induced expression of the SCaM-4 promoter is mediated in part by a GT-1 box that interacts with a GT-1-like transcription factor. Plant Physiol 135:2150–2161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parra G, Bradnam K, Rose AB, Korf I (2011) Comparative and functional analysis of intron-mediated enhancement signals reveals conserved features among plants. Nucleic Acids Res 39:5328–5337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Q, Hu Y, Wei R, Zhang Y, Guan C, Ruan Y, Liu C (2010) Simultaneous silencing of FAD2 and FAE1 genes affects both oleic acid and erucic acid contents in Brassica napus seeds. Plant Cell Rep 29:317–325

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CMJ, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SCM (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pirtle IL, Kongcharoensuntorn W, Nampaisansuk M, Knesek JE, Chapman KD, Pirtle RM (2001) Molecular cloning and functional expression of the gene for a cotton Δ-12 fatty acid desaturase (FAD2). BBA-Gene Struct Expr 1522:122–129

    Article  CAS  Google Scholar 

  • Rouster J, Leah R, Mundy J et al (1997) Identification of a methyl jasmonate-responsive region in the promoter of a lipoxygenase 1 gene expressed in barley grain. Plant J 11:513–523

    Article  CAS  PubMed  Google Scholar 

  • Scheffler JA, Sharpe AG, Schmidt H, Sperling P, Parkin IAP, Lühs W, Heinz E (1997) Desaturase multigene families of Brassica napus arose through genome duplication. Theor Appl Genet 94:583–591

    Article  CAS  Google Scholar 

  • Smooker AM, Wells R, Morgan C, Beaudoin F, Cho K, Fraser F, Bancroft I (2011) The identification and map** of candidate genes and QTL involved in the fatty acid desaturation pathway in Brassica napus. Theor Appl Genet 122:1075–1090

    Article  CAS  PubMed  Google Scholar 

  • Stålberg K, Ellerstöm M, Ezcurra I et al (1996) Disruption of an overlap** E-box/ABRE motif abolished high transcription of the napA storage-protein promoter in transgenic Brassica napus seeds. Planta 199:515–519

    Article  PubMed  Google Scholar 

  • Suh MC, Hahne G, Liu JR, Stewart CN Jr (2015) Plant lipid biology and biotechnology. Plant Cell Rep 34:517–518

    Article  CAS  PubMed  Google Scholar 

  • **ao G, Zhang HJ, Peng Q, Guan CY (2008) Screening and analysis of multiple copy of oleate desaturase gene (fad2) in Brassica napus. Acta Agronomica Sinica 34:1563–1568

    Article  CAS  Google Scholar 

  • **ao G, Zhang ZQ, Yin CF, Liu RY, Wu XM, Tan TL, Guan CY (2014) Characterization of the promoter and 5′-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene 545:45–55

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2000) Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J 21:281–288

    Article  CAS  PubMed  Google Scholar 

  • Yang YY, Yang SQ, Chen ZH, Guan CY, Chen SY, Liu ZS (2011) QTL analysis of 18-C unsaturated fatty acid contents in zero-erucic rapeseed (Brassica napus L.). Acta Agron Sin 37:1342–1350

    Article  CAS  Google Scholar 

  • Yang Q, Fan C, Guo Z, Qin J, Wu J, Li Q, Zhou Y (2012) Identification of FAD2 and FAD3 genes in Brassica napus genome and development of allele-specific markers for high oleic and low linolenic acid contents. Theor Appl Genet 125:715–729

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Graduate Innovation Foundation of Hunan (CX2013A012) and the Major State Basic Research Development Program of China (2015CB150200).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunyun Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, G., Liu, R. et al. The promoter of fatty acid desaturase on chromosome C5 in Brassica napus drives high-level expression in seeds. Plant Biotechnol Rep 10, 369–381 (2016). https://doi.org/10.1007/s11816-016-0407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11816-016-0407-6

Keywords

Navigation