Log in

Boas Type Results for Two-Sided Quaternion Fourier Transform and Uniform Lipschitz Spaces

  • Published:
Complex Analysis and Operator Theory Aims and scope Submit manuscript

Abstract

For the quaternion algebra \({\mathbb {H}}\) and \(f:\mathbb R^2\rightarrow {\mathbb {H}}\), we consider a two-sided quaternion Fourier transform \(\widehat{f}\). Necessary and sufficient conditions for f to belong to generalized uniform Lipschitz spaces are given in terms of behavior of \(\widehat{f}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No data sets were generated or used during the current study.

References

  1. Bary, N.K., Stechkin, S.B.: Best approximation and differential properties of two conjugate functions. Trudy Mosk. Mat. Obs. 5, 483–522 (1956)

    MathSciNet  Google Scholar 

  2. Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction. Springer-Verlag, Berlin-Heidelberg (1976)

    Book  Google Scholar 

  3. Berkak, E.M., Loualid, E.M., Daher, R.: Boas-type theorems for the \(q\)-bessel fourier transform. Anal. Math. Phys. 11, 102 (2021). https://doi.org/10.1007/s13324-021-00542-z

    Article  MathSciNet  Google Scholar 

  4. Boas, R.P.: Integrability Theorems for Trigonometric Transforms. Springer-Verlag, New York (1967)

    Book  Google Scholar 

  5. Butzer, P.L., Nessel, R.J.: Fourier Analysis and Approximation. Birkhauser, Basel-Stuttgart (1971)

    Book  Google Scholar 

  6. Ell, T.A., Le Bihan, N., Sangwine, S.J.: Quaternion Fourier Transforms for Signal and Image Processing. Wiley-ISTE, Hoboken, NJ (2014)

    Book  Google Scholar 

  7. Ernst, R., Bodenhausen, G., Wokaun, A.: Principles of Nuclear Magnetic Resonance in One and Two Dimensions. Oxford Univ. Press, Oxford (1987)

    Google Scholar 

  8. Fülöp, V., Móricz, F.: Absolutely convergent multiple Fourier series and multiplicative Zygmund classes of functions. Analysis 28, 345–354 (2008). https://doi.org/10.1524/anly.2008.0919

    Article  MathSciNet  Google Scholar 

  9. Fülöp, V., Móricz, F., Sáfár, Z.: Double fourier transforms, Lipschitz and Zygmund classes of functions on the plane. East J. Approx. 17, 111–125 (2011)

    MathSciNet  Google Scholar 

  10. Fülöp, V., Móricz, F.: On double sine and cosine transforms, Lipschitz and Zygmund classes. Anal. Theory Appl. 27, 351–364 (2011). https://doi.org/10.1007/s10496-011-0351-9

    Article  MathSciNet  Google Scholar 

  11. Hitzer, E.: Quaternion and Clifford Fourier Transforms. CRC Press, Boca Raton, Fl. (2022)

    Google Scholar 

  12. Hitzer, E.: Two-sided Clifford fourier transform with two square roots of \(-1\) in \(Cl(p, q)\). Adv. Appl. Clifford Algebras. 24, 313–332 (2014). https://doi.org/10.1007/s00006-014-0441-9

    Article  MathSciNet  Google Scholar 

  13. Liflyand, E., Tikhonov, S., Zeltser, M.: Extending tests for convergence of number series. J. Math. Anal. Appl. 377(1), 194–206 (2011). https://doi.org/10.1016/j.jmaa.2010.10.007

    Article  MathSciNet  Google Scholar 

  14. Lorentz, G.G.: Fourier-Koeffizienten und Funktionenklassen. Math. Zeitschr. 51, 135–149 (1948)

    Article  MathSciNet  Google Scholar 

  15. Loualid, E.M., Elgargati, A., Daher, R.: Quaternion fourier transform and generalized Lipschitz classes. Adv. Appl. Clifford Algebras. 31, 14 (2021). https://doi.org/10.1007/s00006-020-01098-0

    Article  MathSciNet  Google Scholar 

  16. Loualid, E.M., Elgargati, A., Berkak, E.M., Daher, R.: Boas-type theorems for the bessel transform. RACSAM. 115, 102 (2021). https://doi.org/10.1007/s13398-021-01087-3

    Article  MathSciNet  Google Scholar 

  17. Móricz, F.: Absolutely convergent fourier series and function classes. J. Math. Anal. Appl. 324(2), 1168–1177 (2006). https://doi.org/10.1016/j.jmaa.2005.12.051

    Article  MathSciNet  Google Scholar 

  18. Móricz, F.: Higher order Lipschitz classes of functions and absolutely convergent fourier series. Acta Math. Hung. 120(4), 355–366 (2008). https://doi.org/10.1007/s10474-007-7141-z

    Article  MathSciNet  Google Scholar 

  19. Móricz, F.: Absolutely convergent fourier integrals and classical function spaces. Arch. Math. 91, 49–62 (2008). https://doi.org/10.1007/s00013-008-2626-8

    Article  MathSciNet  Google Scholar 

  20. Móricz, F.: Absolutely convergent multiple fourier series and multiplicative Lipschitz classes of functions. Acta Math. Hung. 121, 1–19 (2008). https://doi.org/10.1007/s10474-008-7164-0

    Article  MathSciNet  Google Scholar 

  21. Rakhimi, L., Daher, R.: Boas-type theorems for Laguerre type operator. J. Pseudo-Differ. Oper. Appl. 13, 42 (2022). https://doi.org/10.1007/s11868-022-00472-9

    Article  MathSciNet  Google Scholar 

  22. Sommen, F.: Hypercomplex fourier and laplace transforms. I. Illinois J. Math. 26, 332–352 (1982)

    MathSciNet  Google Scholar 

  23. Tikhonov, S.: On generalized Lipschitz classes and fourier series. Zeit. Anal. Anwend. 23, 745–764 (2004)

    Article  MathSciNet  Google Scholar 

  24. Tikhonov, S.: Smoothness conditions and fourier series. Math. Ineq. Appl. 10, 229–242 (2007)

    MathSciNet  Google Scholar 

  25. Tikhonov, S.: Trigonometric series of Nikol’skii classes. Acta Math. Hungar. 114(1–2), 61–78 (2007). https://doi.org/10.1007/s10474-006-0513-y

    Article  MathSciNet  Google Scholar 

  26. Tikhonov, S.: Best approximation and moduli of smoothness: computation and equivalence theorems. J. Approx. Theory 153, 19–39 (2008). https://doi.org/10.1016/j.jat.2007.05.006

    Article  MathSciNet  Google Scholar 

  27. Titchmarsh, E.: Introduction to the Theory of Fourier Integrals. Clarendon press, Oxford (1937)

    Google Scholar 

  28. Volosivets, S.S.: Fourier transforms and generalized lipschitz classes in uniform metric. J. Math. Anal. Appl. 383, 344–352 (2011). https://doi.org/10.1016/j.jmaa.2011.05.026

    Article  MathSciNet  Google Scholar 

  29. Volosivets, S.S.: Multiple fourier coefficients and generalized Lipschitz classes in uniform metric. J. Math. Anal. Appl. 427, 1070–1083 (2015). https://doi.org/10.1016/j.jmaa.2015.02.011

    Article  MathSciNet  Google Scholar 

  30. Volosivets, S.S.: Fourier-bessel transforms and generalized uniform Lipschitz classes. Integr. Transf. Spec. Funct. 33, 559–569 (2022). https://doi.org/10.1080/10652469.2021.1986815

    Article  MathSciNet  Google Scholar 

  31. Volosivets, S.S.: Fourier-Dunkl transforms and generalized symmetric Lipschitz classes. J. Math. Anal. Appl. 520, 126895 (2023). https://doi.org/10.1016/j.jmaa.2022.126895

    Article  MathSciNet  Google Scholar 

  32. Yu, D.: Double trigonometric series with positive coefficients. Anal. Math. 35, 149–167 (2009). https://doi.org/10.1007/s10476-009-0205-2

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Author thanks the anonymous referee for valuable remarks and references to books connected with quaternion Fourier transform.

Author information

Authors and Affiliations

Authors

Contributions

All results are obtained by the author.

Corresponding author

Correspondence to Sergey Volosivets.

Ethics declarations

Conflict of interest

The author declares no competing interests.

Additional information

Communicated by Irene Sabadini

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the topical collection “Higher Dimensional Geometric Function Theory and Hypercomplex Analysis” edited by Irene Sabadini, Michael Shapiro and Daniele Struppa.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volosivets, S. Boas Type Results for Two-Sided Quaternion Fourier Transform and Uniform Lipschitz Spaces. Complex Anal. Oper. Theory 18, 46 (2024). https://doi.org/10.1007/s11785-024-01491-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11785-024-01491-8

Keywords

Mathematics Subject Classification

Navigation