Log in

Electrocatalytic behaviour of Ni and NiCu alloy modified glassy carbon electrode in electro-oxidation of contraflam

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The electrocatalytic oxidation of contraflam was investigated in alkaline solution on nickel and nickel–copper alloy modified glassy carbon electrodes (GC/Ni and GC/NiCu). We prepared these electrodes by galvanostatic deposition and the surface morphologies and compositions of electrodes were determined by energy-dispersive X-ray (EDX) and scanning electron microscopy (SEM). Cyclic voltammetry and chronoamperometric methods were employed to characterize the oxidation process and its kinetics. Voltammetric studies exhibit one pair of well-defined redox peaks, which is ascribed to the redox process of the nickel and followed by the greatly enhanced current response of the anodic peak in the presence of contraflam and a decrease in the corresponding cathodic current peak. This indicates that the immobilized redox mediator on the electrode surface was oxidized contraflam via an electrocatalytic mechanism. The catalytic currents increased linearly with the concentration of contraflam in the range of 0.25–1.5 mmol/L. The anodic peak currents were linearly proportional to the square root of scan rate. This behaviour is the characteristic of a diffusion-controlled process. The determination of contraflam in capsules is applied satisfactorily by modified electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. REMINGTON J P, TROY D B, BERINGER P. Remington: The science and practice of pharmacy [M]. New York: Lippincott Williams & Wilkins, 2006.

    Google Scholar 

  2. BRAYFIELD A. Martindale: The complete drug reference [M]. New York: Pharmaceutical Press, 2014.

    Google Scholar 

  3. SHAH D A, RANA J P, BALDANIA S L, CHHALDTIYA U K, BHATT K K. High-performance thin-layer chromatographic method for the estimation of paracetamol, dicyclomine hydrochloride, and mefenamic acid in combined tablet dosage form [J]. JPC-Journal of Planar Chromatography-Modern TLC, 2014, 27: 52–57.

    Article  Google Scholar 

  4. AL-ABACHI M Q, HADI H. Simple, rapid and sensitive method for the determination of mefenamic acid in pharmaceutical preparations [J]. Journal of Analytical Chemistry, 2014, 69: 769–776.

    Article  Google Scholar 

  5. BEIRAGHI A, POURGHAZI K, AMOLI-DIVA M, RAZMARA A. Magnetic solid phase extraction of mefenamic acid from biological samples based on the formation of mixed hemimicelle aggregates on Fe3O4 nanoparticles prior to its HPLC-UV detection [J]. Journal of Chromatography B, 2014, 945: 46–52.

    Article  Google Scholar 

  6. ZISIMOPOULOS E G, TSOGAS G Z, GIOKAS D L, KAPAKOGLOU N I, VLESSIDIS A G. Indirect chemiluminescence-based detection of mefenamic acid in pharmaceutical formulations by flow injection analysis and effect of gold nanocatalysts [J]. Talanta, 2009, 79: 893–899.

    Article  Google Scholar 

  7. PEREZ-RUIZ T, MARTINZ-LOZANO C, SANZ A, BRAVO E. Determination of flufenamic, meclofenamic and mefenamic acids by capillary electrophoresis using β-cyclodextrin [J]. Journal of Chromatography B: Biomedical Sciences and Applications, 1998, 708: 249–256.

    Article  Google Scholar 

  8. MOREIRA A P L, MARTINI M, CARVALHO L M. Capillary electrophoretic methods for the screening and determination of pharmacologic adulterants in herbal-based pharmaceutical formulations [J]. Electrophoresis, 2014, 35: 3212–3230.

    Article  Google Scholar 

  9. SONG J F, GUO W, KANG X F, HU Y H. Investigation and application of polarographic catalytic wave of oxygen reduction caused by mefenamic acid [J]. Sci China B, 1993, 36: 906–911.

    Google Scholar 

  10. BLANCO-LOPEZ M C, LOBO-CASTANON M J, MIRANDAORDIERES A J, TUÑÓN-BLANCO P. Voltammetric response of diclofenac-molecularly imprinted film modified carbon electrodes [J]. Anal Bioanal Chem, 2003, 377: 257–261.

    Article  Google Scholar 

  11. AHMADI M, MADRAKIAN T, AFKHAMI A. Molecularly imprinted polymer coated magnetite nanoparticles as an efficient mefenamic acid resonance light scattering nanosensor [J]. Anal Chim Acta, 2014, 852: 250–256.

    Article  Google Scholar 

  12. MOGHADDAM A B, MOHAMMADI A, MOHAMMADI S. Electroanalysis of mefenamic acid in pharmaceutical formulation and spiked biological fluids on modified carbon nanotube electrode [J]. Pharmaceut Anal Acta, 2012, 3: 6–10.

    Google Scholar 

  13. RIYANTO A, ANSHORI A. Electroanalysis of mefenamic acid using platinum powder composite microelectrode (PPCM) [J]. Anal Bioanal Chem, 2014, 6: 159–169.

    Google Scholar 

  14. DOU Z, CUI L, HE X. Electrochimical determination of uric acid, xanthine and hypoxanthine by poly(xylitol) modified glassy carbon electrode [J]. J Cent South Univ T, 2014, 21(3): 870–876.

    Article  Google Scholar 

  15. MOHAMMADI A, MOGHADDAM A B, ALIKHANI E, EILKHANIZHDEH K, MOZAFFARI S. Electrochemical quantification of fluoxetine in pharmaceutical formulation using carbon nanoparticles [J]. Micro Nano Lett, IET, 2013, 8: 853–857.

    Article  Google Scholar 

  16. MOGHADDAM A B, MOHAMMADI A, MOHAMMADI S, RAYEJI D, DINARVAND R, BAGAI M, WALKER R B. The determination of acetaminophen using a carbon nanotube: Graphite-based electrode [J]. Microchim Acta, 2010, 171: 377–384.

    Article  Google Scholar 

  17. GHORBANI-BIDKORBEH F, SHAHROKHIAN S, MOHAMMADI A, DINARVAND R. Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode [J]. Electrochim. Acta, 2010, 55: 2752–2759.

    Article  Google Scholar 

  18. SHAHROKHIAN S, GHORBANI-BIDKORBEH F, MOHAMMADI A, DINARVAND R. Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex [J]. J Solid State Electrochem, 2012, 16: 1643–1650.

    Article  Google Scholar 

  19. NAEEMY A, MOHAMMADI A, BAKHTIARI H, ASHOURI N, WALKER R B. Electro- oxidation of acetaminophen on nickel/poly (O-aminophenol)/multi-walled carbon nanotube nanocomposite modified graphite electrode [J]. Micro Nano Lett, IET, 2014, 9: 691–696.

    Article  Google Scholar 

  20. MOHAMMADI A, MOGHADDAM A B, BADRAGHI J. Direct electron transfer of ferritin on electrodeposited nickel oxide cubic nanoparticles [J]. Anal Methods, 2012, 4: 1024–1028.

    Article  Google Scholar 

  21. MOHAMMADI A, MOGHADDAM A B, KAZEMZAD M, DINARVAND R, BADRAGHI J. Synthesis of nickel oxides nanoparticles on glassy carbon as an electron transfer facilitator for horseradish peroxidase: Direct electron transfer and H2O2 determination [J]. Mater Sci Eng C, 2009, 29: 1752–1758.

    Article  Google Scholar 

  22. EHSANI A, MAHJANI M G, JAFARIAN M, NAEEMY A. Influence of ionic surfactant on physio-electrochemical properties and fractal dimension of poly ortho aminophenol film [J]. Prog Org Coat., 2010, 69: 510–516.

    Article  Google Scholar 

  23. EHSANI A, MAHJANI M G, JAFARIAN M, NAEEMY A. Electrosynthesis of polypyrrole composite film and electrocatalytic oxidation of ethanol [J]. Electrochim Acta, 2012, 71: 128–133.

    Article  Google Scholar 

  24. FEIZBAKHSH A, EHSANI A, NAEEMY A. Electrocatalytic oxidation of paracetamol on Ni and NiCu alloy modified glassy carbon electrode [J]. J Chinese Chem Soc, 2012, 59: 1086–1093.

    Article  Google Scholar 

  25. KHULBE K, MANN R, MANOOGIAN A. Behavior of nickel-copper alloy in hydrogenation, orthohydrogen-parahydrogen conversion and H2-D2 exchange reaction [J]. Chem Rev, 1980, 80: 417–428.

    Article  Google Scholar 

  26. BRIGGS G, SNODIN P. Ageing and the diffusion process at the nickel hydroxide electrode [J]. Electrochim Acta, 1982, 27: 565–572.

    Article  Google Scholar 

  27. HAHN F, BEDEN B, CROISSANT M, LAMY C. In situ UV visible reflectance spectroscopic investigation of the nickel electrodealkaline solution interface [J]. Electrochim Acta, 1986, 31: 335–342.

    Article  Google Scholar 

  28. DESILVESTRO J, CORRIGAN D A, WEAVER M J. Characterization of redox states of nickel hydroxide film electrodes by in situ surface Raman spectroscopy [J]. J Electrochem Soc, 1988, 135: 885–892.

    Article  Google Scholar 

  29. CHEN S, BROWN L, LEVENDORF M, CAI W JU S Y, EDGEWORTH J, LI X, MAGNUSON C W, VELAMAKANNI A, PINER R D. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy [J]. ACS Nano, 2011, 5: 1321–1327.

    Article  Google Scholar 

  30. LUO P, PRABHU S V, BALDWIN R P. Constant potential amperometric detection at a copper-based electrode: Electrode formation and operation [J]. Anal Chem, 1990, 62: 752–755.

    Article  Google Scholar 

  31. CHEN J, BRADHURST D, DOU S. Nickel hydroxide as an active material for the positive electrode in rechargeable alkaline batteries [J]. J Electrochem Soc, 1999, 146: 3606–3612.

    Article  Google Scholar 

  32. SINGH D. Characteristics and Effects of γ-NiOOH on cell performance and a method to quantify it in nickel electrodes [J]. J Electrochem Soc, 1998, 145: 116–120.

    Article  Google Scholar 

  33. LUO P F, KUWANA T, PAUL D K. Electrochemical and XPS study of the nickel-titanium electrode surface [J]. Anal Chem, 1996, 68: 3330–3337.

    Article  Google Scholar 

  34. BARD A J, FAULKNER L R. Electrochemical methods: Fundamentals and applications [M]. Vol. 2. New York: Wiley, 1980.

    Google Scholar 

  35. HELI H, JABBARI A, MAJDI S, MAHJOUB M, MOOSAVIMOVAHEDI A, SHEIBANI S. Electrooxidation and determination of some non-steroidal anti-inflammatory drugs on nanoparticles of Ni–curcumin-complex-modified electrode [J]. J Solid State Electrochem, 2009, 13: 1951–1958.

    Article  Google Scholar 

  36. MILLER J C, MILLER J N. Statistics for analytical chemistry [M]. 4th ed. New York: Ellis-Harwood, 1994.

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge financial assistance from Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammadi Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, N., Ali, M., Ali, E. et al. Electrocatalytic behaviour of Ni and NiCu alloy modified glassy carbon electrode in electro-oxidation of contraflam. J. Cent. South Univ. 24, 1703–1712 (2017). https://doi.org/10.1007/s11771-017-3577-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3577-7

Key words

Navigation