Log in

Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1–100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the reproducibility of the electrode response, based on the six measurements during 1 month, was less than 3.0% for the slope of the calibration curves of MP. The electrochemical method as a simple, sensitive, and selective method was developed for the determination of MP in pharmaceutical dosage form and human plasma without any treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sahasranaman S, Howard D, Roy S (2008) Eur J Clin Pharmacol 64:753–767

    Article  CAS  Google Scholar 

  2. Nielsen OH, Vainer B, Rask-Madsen J (2001) Aliment Pharmacol Ther 15:1699–1708

    Article  CAS  Google Scholar 

  3. Shin SJ, Collins MT (2008) Antimicrob Agents Chemother 52:418–426

    Article  CAS  Google Scholar 

  4. Hawwa AF, Millership JS, Collier PS, McElnay JC (2009) J Pharm Biomed Anal 49:401–409

    Article  CAS  Google Scholar 

  5. Mawatari H, Kato Y, Nishimura SI, Sakura N, Ueda K (1998) J Chromatogr B 716:392–396

    Article  CAS  Google Scholar 

  6. Georget S, Vigneron J, May I, Perrin A, Hoffman MA, Hoffman M (1999) J Clin Pharm Therapeut 24:273–277

    Article  CAS  Google Scholar 

  7. Wang CC, Chiou SS, Wu SM (2005) Electrophoresis 26:2637–2642

    Article  CAS  Google Scholar 

  8. Couderc F, Causse E, Bayle C (1998) Electrophoresis 19:2777–2790

    Article  CAS  Google Scholar 

  9. Wang A, Zhang L, Zhang S, Fang Y (2000) J Pharm Biomed Anal 23:429–436

    Article  CAS  Google Scholar 

  10. Taneja DK, Jain NK (1996) Indian Drugs 33:403–410

    CAS  Google Scholar 

  11. Chrzanowska M, Sloderbach A (1997) Chem Anal 42:381–386

    CAS  Google Scholar 

  12. Gajewska M, Dzierzgowska A, Pawiski T, Czerwiska K (1992) Acta Pol Pharm 49:13–19

    CAS  Google Scholar 

  13. Yang P, Chen Y, Zhu Q, Wang F, Wang L, Li Y (2008) Microchim Acta 163:263–269

    Article  CAS  Google Scholar 

  14. Wang L, Ling B, Chen H, Liang A, Qian B, Fu J (2010) Lumin 25:431–435

    Article  CAS  Google Scholar 

  15. Huang Y, Zhao Sh, Shi M, Liang H (2011) J Pharm Biomed Anal 55:889–894

    Article  CAS  Google Scholar 

  16. Yao T, Uda J, Wasa T, Musha S (1978) Bull Chem Soc Jpn 51:2739–2740

    Article  CAS  Google Scholar 

  17. Li MG, Wang YL, Wang GF, Fang B (2005) Ann Chim 95:685–693

    Article  CAS  Google Scholar 

  18. Cao XN, Lin L, Zhou YY, Shi GY, Zhang W, Yamamoto K, ** LT (2003) Talanta 60:1063–1070

    Article  CAS  Google Scholar 

  19. Lu BY, Li H, Deng H, Xu Z, Li WS, Chen HY (2008) J Electroanal Chem 621:97–102

    Article  CAS  Google Scholar 

  20. Ensafi AA, Karimi-Male H (2011) Determination of 6-mercaptopurine in the presence of uric acid using modified multiwall carbon nanotubes-TiO2 as a voltammetric sensor. Drug Test Anal. doi:10.1002/dta.286

  21. Zeng B, Purdy WC (1998) Electroanalysis 10:236–239

    Article  CAS  Google Scholar 

  22. Chen CM, Ho YH, Wu SM, Chang GL, Lin CH (2009) J Nanosci Nanotech 9:718–722

    Article  CAS  Google Scholar 

  23. Huang Y, Xue SF, Tao Z, Zhu QJ, Ma YH, Zhong SH (2011) J Incl Phenom Macro 69(1–2):131–137

    Article  CAS  Google Scholar 

  24. Elisa M, Chaves L, Palacios-Santander JM, Cubillana-Aguilera LM, Naranjo-Rodríguez I, Hidalgo-Hidalgo-de-Cisneros JL (2006) Sens Actuators B 11:5575–5583

    Google Scholar 

  25. Shahrokhian S, Karimi M, Khajehsharifi H (2005) Sens Actuators B 109:278–284

    Article  Google Scholar 

  26. Amini MK, Khorasani JH, Khaloo SS, Tangestaninejad S (2003) Anal Biochem 320:32–38

    Article  CAS  Google Scholar 

  27. Shahrokhian S, Yazdani J (2003) Electrochim Acta 48:4143–4148

    Article  CAS  Google Scholar 

  28. Shahrokhian S, Souri A, Khajehsharifi H (2004) J Electroanal Chem 565:95–101

    Article  CAS  Google Scholar 

  29. Shahrokhian S, Ghalhkani M, Amini MK (2009) Sens Actuators B 137:669–675

    Article  Google Scholar 

  30. Shahrokhian S, Fotouhi L (2007) Sens Actuators B 123:942–949

    Article  Google Scholar 

  31. Qi X, Baldwin RP (1996) J Electrochem Soc 143:1283–1287

    Article  CAS  Google Scholar 

  32. Siswana MP, Ozoemena KI, Nyokong T (2006) Electrochim Acta 52:114–122

    Article  CAS  Google Scholar 

  33. Shahrokhian S, Zare-Mehrjardi HR (2007) Sens Actuators B 121:530–537

    Article  Google Scholar 

  34. Shahrokhian S, Amiri M (2007) J Solid State Electrochem 11:1133–1138

    Article  CAS  Google Scholar 

  35. Shahrokhian S, Kamalzadeh Z, Bezaatpour A, Boghaei DM (2008) Sens Actuators B 133:599–606

    Article  Google Scholar 

  36. Streeter I, Wildgoose GG, Shao L, Compton RG (2008) Sens Actuators B 133:462–466

    Article  Google Scholar 

  37. Keeley GP, Lyons MEG (2009) Int J Electrochem Sci 4:794–809

    CAS  Google Scholar 

  38. **ao L, Wildgoose GG, Compton RG (2009) Sens Actuators B 138:524–531

    Article  Google Scholar 

  39. Averill DF, Broman RF (1987) Inorg Chem 17:3389–3394

    Article  Google Scholar 

  40. Zhang ZWE (2000) Electrochemical principles and methods. Science, Bei**g

    Google Scholar 

  41. ICH (1994) Text on validation of analytical procedures. “ICH Harmonized Tripartite Guideline”. ICH, Geneva

    Google Scholar 

  42. USFDA (2001) Guidance for industry. Bioanalytical method validation. USFDA, Silver Spring

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the support of this work by the Research Council and the Center of Excellence for Nanostructures of the Sharif University of Technology, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saeed Shahrokhian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahrokhian, S., Ghorbani-Bidkorbeh, F., Mohammadi, A. et al. Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex. J Solid State Electrochem 16, 1643–1650 (2012). https://doi.org/10.1007/s10008-011-1575-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-011-1575-5

Keywords

Navigation