Log in

A review on structures, materials and applications of stretchable electrodes

  • Review Article
  • Published:
Frontiers of Materials Science Aims and scope Submit manuscript

Abstract

With the rapid development of wearable smart devices, many researchers have carried out in-depth research on the stretchable electrodes. As one of the core components for electronics, the electrode mainly transfers the electrons, which plays an important role in driving the various electrical devices. The key to the research for the stretchable electrode is to maintain the excellent electrical properties or exhibit the regular conductive change when subjected to large tensile deformation. This article outlines the recent progress of stretchable electrodes and gives a comprehensive introduction to the structures, materials, and applications, including supercapacitors, lithium-ion batteries, organic light-emitting diodes, smart sensors, and heaters. The performance comparison of various stretchable electrodes was proposed to clearly show the development challenges in this field. We hope that it can provide a meaningful reference for realizing more sensitive, smart, and low-cost wearable electrical devices in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park J J, Hyun W J, Mun S C, et al. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Applied Materials & Interfaces, 2015, 7(11): 6317–6324

    Article  CAS  Google Scholar 

  2. Ryu S, Lee P, Chou J B, et al. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano, 2015, 9(6): 5929–5936

    Article  CAS  Google Scholar 

  3. He X, Liu Q, Wang J, et al. Wearable gas/strain sensors based on reduced graphene oxide/linen fabrics. Frontiers of Materials Science, 2019, 13(3): 305–313

    Article  Google Scholar 

  4. Yu L, Yeo J C, Soon R H, et al. Highly stretchable, weavable, and washable piezoresistive microfiber sensors. ACS Applied Materials & Interfaces, 2018, 10(15): 12773–12780

    Article  CAS  Google Scholar 

  5. Ju G, Khan M A, Zheng H, et al. Honeycomb-like polyaniline for flexible and folding all-solid-state supercapacitors. Frontiers of Materials Science, 2019, 13(2): 133–144

    Article  Google Scholar 

  6. Cai B, Shao C, Qu L, et al. Preparation ofsulfur-doped graphene fibers and their application in flexible fibriform micro-super-capacitors. Frontiers of Materials Science, 2019, 13(2): 145–153

    Article  Google Scholar 

  7. Lv Z, Luo Y, Tang Y, et al. Editable supercapacitors with customizable stretchability based on mechanically strengthened ultralong MnO2 nanowire composite. Advanced Materials, 2018, 30(2): 1704531

    Article  Google Scholar 

  8. Singh V, Sheng Y, Tsao H. Self-healing atypical liquid-infused surfaces: superhydrophobicity and superoleophobicity in submerged conditions. Journal of the Taiwan Institute of Chemical Engineers, 2019, 97: 96–104

    Article  CAS  Google Scholar 

  9. Trung T Q, Kim C, Lee H B, et al. Toward a stretchable organic light-emitting diode on 3D microstructured elastomeric substrate and transparent hybrid anode. Advanced Materials Technologies, 2020, 5(2): 1900995

    Article  CAS  Google Scholar 

  10. An B W, Gwak E J, Kim K, et al. Stretchable, transparent electrodes as wearable heaters using nanotrough networks of metallic glasses with superior mechanical properties and thermal stability. Nano Letters, 2016, 16(1): 471–478

    Article  CAS  Google Scholar 

  11. Song J, Li J, Xu J, et al. Superstable transparent conductive Cu@Cu4Ni nanowire elastomer composites against oxidation, bending, stretching, and twisting for flexible and stretchable optoelectronics. Nano Letters, 2014, 14(11): 6298–6305

    Article  CAS  Google Scholar 

  12. Liang J, Li L, Niu X, et al. Elastomeric polymer light-emitting devices and displays. Nature Photonics, 2013, 7(10): 817–824

    Article  CAS  Google Scholar 

  13. Yin D, Feng J, Jiang N R, et al. Two-dimensional stretchable organic light-emitting devices with high efficiency. ACS Applied Materials & Interfaces, 2016, 8(45): 31166–31171

    Article  CAS  Google Scholar 

  14. Bae S K, Choo D C, Kang H S, et al. Transparent ultra-thin silver electrodes formed via a maskless evaporation process for applications in flexible organic light-emitting devices. Nano Energy, 2020, 71: 104649

    Article  CAS  Google Scholar 

  15. Lee J, Lee P, Lee H B, et al. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Advanced Functional Materials, 2013, 23(34): 4171–4176

    Article  CAS  Google Scholar 

  16. Wang Z, Huang Y, Sun J, et al. Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Applied Materials & Interfaces, 2016, 8(37): 24837–24843

    Article  CAS  Google Scholar 

  17. Ren M, Zhou Y, Wang Y, et al. Highly stretchable and durable strain sensor based on carbon nanotubes decorated thermoplastic polyurethane fibrous network with aligned wave-like structure. Chemical Engineering Journal, 2019, 360: 762–777

    Article  CAS  Google Scholar 

  18. Chen X, **ong J, Parida K, et al. Transparent and stretchable bimodal triboelectric nanogenerators with hierarchical micronanostructures for mechanical and water energy harvesting. Nano Energy, 2019, 64: 103904

    Article  CAS  Google Scholar 

  19. Lee Y, Chae S, Park H, et al. Stretchable and transparent supercapacitors based on extremely long MnO2/Au nanofiber networks. Chemical Engineering Journal, 2020, 382: 122798

    Article  CAS  Google Scholar 

  20. Lee J H, Kim J, Liu D, et al. Highly aligned, anisotropic carbon nanofiber films for multidirectional strain sensors with exceptional selectivity. Advanced Functional Materials, 2019, 29(29): 1901623

    Article  Google Scholar 

  21. An S, Jo H S, Kim D Y, et al. Self-junctioned copper nanofiber transparent flexible conducting film via electrospinning and electroplating. Advanced Materials, 2016, 28(33): 7149–7154

    Article  CAS  Google Scholar 

  22. Sun J, Huang Y, Fu C, et al. High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy, 2016, 27: 230–237

    Article  CAS  Google Scholar 

  23. Seyedin S, Uzun S, Levitt A, et al. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Advanced Functional Materials, 2020, 30 (12): 1910504

    Article  CAS  Google Scholar 

  24. Mun T J, Kim S H, Park J W, et al. Wearable energy generating and storing textile based on carbon nanotube yarns. Advanced Functional Materials, 2020, 30(23): 2000411

    Article  CAS  Google Scholar 

  25. ** H, Nayeem M O G, Lee S, et al. Highly durable nanofiber-reinforced elastic conductors for skin-tight electronic textiles. ACS Nano, 2019, 13(7): 7905–7912

    Article  CAS  Google Scholar 

  26. Jost K, Stenger D, Perez C R, et al. Knitted and screen printed carbon-fiber supercapacitors for applications in wearable electronics. Energy & Environmental Science, 2013, 6(9): 2698–2705

    Article  CAS  Google Scholar 

  27. Yin Z, Song S K, Cho S, et al. Curved copper nanowires-based robust flexible transparent electrodes via all-solution approach. Nano Research, 2017, 10(9): 3077–3091

    Article  CAS  Google Scholar 

  28. Yin Z, Song S K, You D J, et al. Novel synthesis, coating, and networking of curved copper nanowires for flexible transparent conductive electrodes. Small, 2015, 11(35): 4576–4583

    Article  CAS  Google Scholar 

  29. Araki T, Jiu J, Nogi M, et al. Low haze transparent electrodes and highly conducting air dried films with ultra-long silver nanowires synthesized by one-step polyol method. Nano Research, 2014, 7 (2): 236–245

    Article  CAS  Google Scholar 

  30. Lee P, Lee J, Lee H, et al. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Advanced Materials, 2012, 24(25): 3326–3332

    Article  CAS  Google Scholar 

  31. Lee H, Choi T K, Lee Y B, et al. A graphene-based electrochemical device with thermoresponsive microneedles for diabetes monitoring and therapy. Nature Nanotechnology, 2016, 11(6): 566–572

    Article  Google Scholar 

  32. Xu S, Zhang Y, Cho J, et al. Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems. Nature Communications, 2013, 4(1): 1543–1548

    Article  Google Scholar 

  33. Gao Y, Guo F, Cao P, et al. Winding-locked carbon nanotubes/polymer nanofibers helical yarn for ultrastretchable conductor and strain sensor. ACS Nano, 2020, 14(3): 3442–3450

    Article  CAS  Google Scholar 

  34. Yang Z, Zhai Z, Song Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics. Advanced Materials, 2020, 32(10): 1907495

    Article  CAS  Google Scholar 

  35. Lipomi D J, Tee B C K, Vosgueritchian M, et al. Stretchable organic solar cells. Advanced Materials, 2011, 23(15): 1771–1775

    Article  CAS  Google Scholar 

  36. Yang P K, Lin L, Yi F, et al. A flexible, stretchable and shape-adaptive approach for versatile energy conversion and self-powered biomedical monitoring. Advanced Materials, 2015, 27 (25): 3817–3824

    Article  CAS  Google Scholar 

  37. Jiang Z, Nayeem M O G, Fukuda K, et al. Highly stretchable metallic nanowire networks reinforced by the underlying randomly distributed elastic polymer nanofibers via interfacial adhesion improvement. Advanced Materials, 2019, 31(37): 1903446

    Article  Google Scholar 

  38. Sun F, Tian M, Sun X, et al. Stretchable conductive fibers of ultrahigh tensile strain and stable conductance enabled by a worm-shaped graphene microlayer. Nano Letters, 2019, 19(9): 6592–6599

    Article  CAS  Google Scholar 

  39. Yoon S, Kim H K. Cost-effective stretchable Ag nanoparticles electrodes fabrication by screen printing for wearable strain sensors. Surface and Coatings Technology, 2020, 384: 125308

    Article  CAS  Google Scholar 

  40. Wu S, Zhang J, Ladani R B, et al. Novel electrically conductive porous PDMS/carbon nanofiber composites for deformable strain sensors and conductors. ACS Applied Materials & Interfaces, 2017, 9(16): 14207–14215

    Article  CAS  Google Scholar 

  41. Amjadi M, Pichitpajongkit A, Lee S, et al. Highly stretchable and sensitive strain sensor based on silver nanowire-elastomer nanocomposite. ACS Nano, 2014, 8(5): 5154–5163

    Article  CAS  Google Scholar 

  42. Zhang R, Ying C, Gao H, et al. Highly flexible strain sensors based on polydimethylsiloxane/carbon nanotubes (CNTs) prepared by a swelling/permeating method and enhanced sensitivity by CNTs surface modification. Composites Science and Technology, 2019, 171: 218–225

    Article  CAS  Google Scholar 

  43. Hong S, Lee J, Do K, et al. Stretchable electrode based on laterally combed carbon nanotubes for wearable energy harvesting and storage devices. Advanced Functional Materials, 2017, 27(48): 1704353

    Article  Google Scholar 

  44. Liu Z, Qi D, Hu G, et al. Surface strain redistribution on structured microfibers to enhance sensitivity of fiber-shaped stretchable strain sensors. Advanced Materials, 2018, 30(5): 1704229

    Article  Google Scholar 

  45. Yu J, Lu W, Pei S, et al. Omnidirectionally stretchable high-performance supercapacitor based on isotropic buckled carbon nanotube films. ACS Nano, 2016, 10(5): 5204–5211

    Article  CAS  Google Scholar 

  46. Mu C, Song Y, Huang W, et al. Flexible normal-tangential force sensor with opposite resistance responding for highly sensitive artificial skin. Advanced Functional Materials, 2018, 28(18): 1707503

    Article  Google Scholar 

  47. Xu P, Kang J, Choi J B, et al. Laminated ultrathin chemical vapor deposition graphene films based stretchable and transparent high-rate supercapacitor. ACS Nano, 2014, 8(9): 9437–9445

    Article  CAS  Google Scholar 

  48. Song X, Yang J, Ran Q, et al. 3-D conformal graphene for stretchable and bendable transparent conductive film. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2015, 3(48): 12379–12384

    Article  CAS  Google Scholar 

  49. Kim D, Yoon Y, Kauh S K, et al. Towards sub-microscale liquid metal patterns: cascade phase change mediated pick-n-place transfer of liquid metals printed and stretched over a flexible substrate. Advanced Functional Materials, 2018, 28(28): 1800380

    Article  Google Scholar 

  50. Yin D, Feng J, Ma R, et al. Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process. Nature Communications, 2016, 7(1): 11573–11579

    Article  CAS  Google Scholar 

  51. Lee J G, Lee J H, An S, et al. Highly flexible, stretchable, wearable, patternable and transparent heaters on complex 3D surfaces formed from supersonically sprayed silver nanowires. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2017, 5(14): 6677–6685

    Article  CAS  Google Scholar 

  52. Lee Y, Le V T, Kim J G, et al. Versatile, high-power, flexible, stretchable carbon nanotube sheet heating elements tolerant to mechanical damage and severe deformation. Advanced Functional Materials, 2018, 28(8): 1706007

    Article  Google Scholar 

  53. Cao C, Zhou Y, Ubnoske S, et al. Highly stretchable super-capacitors via crumpled vertically aligned carbon nanotube forests. Advanced Energy Materials, 2019, 9(22): 1900618

    Article  Google Scholar 

  54. Tang Q, Chen M, Wang G, et al. A facile prestrain-stick-release assembly of stretchable supercapacitors based on highly stretchable and sticky hydrogel electrolyte. Journal of Power Sources, 2015, 284: 400–408

    Article  CAS  Google Scholar 

  55. Zhang B, Li W, Nogi M, et al. Alloying and embedding of Cucore/Ag-shell nanowires for ultrastable stretchable and transparent electrodes. ACS Applied Materials & Interfaces, 2019, 11 (20): 18540–18547

    Article  CAS  Google Scholar 

  56. Hong S Y, Lee Y H, Park H, et al. Stretchable active matrix temperature sensor array of polyaniline nanofibers for electronic skin. Advanced Materials, 2016, 28(5): 930–935

    Article  CAS  Google Scholar 

  57. Weng W, Sun Q, Zhang Y, et al. A gum-like lithium-ion battery based on a novel arched structure. Advanced Materials, 2015, 27 (8): 1363–1369

    Article  CAS  Google Scholar 

  58. Zhang Y, Bai W, Ren J, et al. Super-stretchy lithium-ion battery based on carbon nanotube fiber. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2014, 2(29): 11054–11059

    Article  CAS  Google Scholar 

  59. Gilshteyn E P, Romanov S A, Kopylova D S, et al. Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics. ACS Applied Materials & Interfaces, 2019, 11(30): 27327–27334

    Article  CAS  Google Scholar 

  60. Li X, Li H, Fan X, et al. 3D-printed stretchable micro-supercapacitor with remarkable areal performance. Advanced Energy Materials, 2020, 10(14): 1903794

    Article  CAS  Google Scholar 

  61. Sun P, Qiu M, Li M, et al. Stretchable Ni@NiCoP textile for wearable energy storage clothes. Nano Energy, 2019, 55: 506–515

    Article  CAS  Google Scholar 

  62. Zhang Y, Bai W, Cheng X, et al. Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs. Angewandte Chemie International Edition, 2014, 53(52): 14564–14568

    Article  CAS  Google Scholar 

  63. Li F, Chen J, Wang X, et al. Stretchable supercapacitor with adjustable volumetric capacitance based on 3D interdigital electrodes. Advanced Functional Materials, 2015, 25(29): 4601–4606

    Article  CAS  Google Scholar 

  64. Chen T, Xue Y, Roy A K, et al. Transparent and stretchable high-performance supercapacitors based on wrinkled graphene electrodes. ACS Nano, 2014, 8(1): 1039–1046

    Article  CAS  Google Scholar 

  65. Nam I, Bae S, Park S, et al. Omnidirectionally stretchable, high performance supercapacitors based on a graphene-carbon nanotube layered structure. Nano Energy, 2015, 15: 33–42

    Article  CAS  Google Scholar 

  66. Hong J Y, Kim W, Choi D, et al. Omnidirectionally stretchable and transparent graphene electrodes. ACS Nano, 2016, 10(10): 9446–9455

    Article  CAS  Google Scholar 

  67. Yu Z, Niu X, Liu Z, et al. Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Advanced Materials, 2011, 23(34): 3989–3994

    Article  CAS  Google Scholar 

  68. Wang L, Chen Y, Lin L, et al. Highly stretchable, anti-corrosive and wearable strain sensors based on the PDMS/CNTs decorated elastomer nanofiber composite. Chemical Engineering Journal, 2019, 362: 89–98

    Article  CAS  Google Scholar 

  69. Yang Y, Sun N, Wen Z, et al. Liquid-metal-based super-stretchable and structure-designable triboelectric nanogenerator for wearable electronics. ACS Nano, 2018, 12(2): 2027–2034

    Article  CAS  Google Scholar 

  70. Yi X, Yu Z, Niu X, et al. Intrinsically stretchable resistive switching memory enabled by combining a liquid metal-based soft electrode and a metal-organic framework insulator. Advanced Electronic Materials, 2019, 5(2): 1800655

    Article  Google Scholar 

  71. Hwang B Y, Choi S H, Lee K W, et al. Highly stretchable and transparent electrode film based on SWCNT/silver nanowire hybrid nanocomposite. Composites Part B: Engineering, 2018, 151: 1–7

    Article  CAS  Google Scholar 

  72. Lee J H, Jeong Y R, Lee G, et al. Highly conductive, stretchable and transparent PEDOT:PSS electrodes fabricated with triblock copolymer additives and acid treatment. ACS Applied Materials & Interfaces, 2018, 10(33): 28027–28035

    Article  CAS  Google Scholar 

  73. Teo M Y, Kim N, Kee S, et al. Highly stretchable and highly conductive PEDOT:PSS/ionic liquid composite transparent electrodes for solution-processed stretchable electronics. ACS Applied Materials & Interfaces, 2017, 9(1): 819–826

    Article  CAS  Google Scholar 

  74. Granero A J, Wagner P, Wagner K, et al. Highly stretchable conducting SIBS-P3HT fibers. Advanced Functional Materials, 2011, 21(5): 955–962

    Article  CAS  Google Scholar 

  75. Yan C, Wang X, Cui M, et al. Stretchable silver-zinc batteries based on embedded nanowire elastic conductors. Advanced Energy Materials, 2014, 4(5): 1301396

    Article  Google Scholar 

  76. Song J H, Kim Y T, Cho S, et al. Surface-embedded stretchable electrodes by direct printing and their uses to fabricate ultrathin vibration sensors and circuits for 3D structures. Advanced Materials, 2017, 29(43): 1702625

    Article  Google Scholar 

  77. Ye G, Song Z, Yu T, et al. Dynamic Ag - N bond enhanced stretchable conductor for transparent and self-healing electronic skin. ACS Applied Materials & Interfaces, 2020, 12(1): 1486–1494

    Article  CAS  Google Scholar 

  78. Matsunaga M, Hirotani J, Kishimoto S, et al. High-output, transparent, stretchable triboelectric nanogenerator based on carbon nanotube thin film toward wearable energy harvesters. Nano Energy, 2020, 67: 104297

    Article  CAS  Google Scholar 

  79. Choi W M, Song J, Khang D Y, et al. Biaxially stretchable “wavy” silicon nanomembranes. Nano Letters, 2007, 7(6): 1655–1663

    Article  CAS  Google Scholar 

  80. Qi D, Liu Z, Liu Y, et al. Suspended wavy graphene microribbons for highly stretchable microsupercapacitors. Advanced Materials, 2015, 27(37): 5559–5566

    Article  CAS  Google Scholar 

  81. Cheng T, Zhang Y Z, Lai W Y, et al. High-performance stretchable transparent electrodes based on silver nanowires synthesized via an eco-friendly halogen-free method. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2014, 2(48): 10369–10376

    Article  CAS  Google Scholar 

  82. Xu F, Zhu Y. Highly conductive and stretchable silver nanowire conductors. Advanced Materials, 2012, 24(37): 5117–5122

    Article  CAS  Google Scholar 

  83. Shen G, Chen B, Liang T, et al. Transparent and stretchable strain sensors with improved sensitivity and reliability based on Ag NWs and PEDOT:PSS patterned microstructures. Advanced Electronic Materials, 2020, 6(8): 1901360

    Article  CAS  Google Scholar 

  84. Zhang Z, Deng J, Li X, et al. Superelastic supercapacitors with high performances during stretching. Advanced Materials, 2015, 27(2): 356–362

    Article  CAS  Google Scholar 

  85. Su Y, ** X, Yu K J, et al. In-plane deformation mechanics for highly stretchable electronics. Advanced Materials, 2017, 29(8): 1604989

    Article  Google Scholar 

  86. Lv J, Jeerapan I, Tehrani F, et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy & Environmental Science, 2018, 11(12): 3431–3442

    Article  CAS  Google Scholar 

  87. Li M, Zu M, Yu J, et al. Stretchable fiber supercapacitors with high volumetric performance based on buckled MnO2/oxidized carbon nanotube fiber electrodes. Small, 2017, 13(12): 1602994

    Article  Google Scholar 

  88. Liu Z, Qi D, Guo P, et al. Thickness-gradient films for high gauge factor stretchable strain sensors. Advanced Materials, 2015, 27 (40): 6230–6237

    Article  CAS  Google Scholar 

  89. Balandin A A, Ghosh S, Bao W, et al. Superior thermal conductivity of single-layer graphene. Nano Letters, 2008, 8(3): 902–907

    Article  CAS  Google Scholar 

  90. Zang J, Ryu S, Pugno N, et al. Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nature Materials, 2013, 12(4): 321–325

    Article  CAS  Google Scholar 

  91. Pan F, Chen S M, Li Y, et al. 3D graphene films enable simultaneously high sensitivity and large stretchability for strain sensors. Advanced Functional Materials, 2018, 28(40): 1803221

    Article  Google Scholar 

  92. Yun J, Lee H, Song C, et al. A fractal-designed stretchable and transparent microsupercapacitor as a Skin-attachable energy storage device. Chemical Engineering Journal, 2020, 387: 124076

    Article  CAS  Google Scholar 

  93. Yin Z, Cho S, You D J, et al. Copper nanowire/multi-walled carbon nanotube composites as all-nanowire flexible electrode for fast-charging/discharging lithium-ion battery. Nano Research, 2018, 11(2): 769–779

    Article  CAS  Google Scholar 

  94. Li X, Wang Y, Yin C, et al. Copper nanowires in recent electronic applications: Progress and perspectives. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2020, 8(3): 849–872

    Article  CAS  Google Scholar 

  95. Tang Y, Gong S, Chen Y, et al. Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano, 2014, 8(6): 5707–5714

    Article  CAS  Google Scholar 

  96. Shi Y, Peng L, Ding Y, et al. Nanostructured conductive polymers for advanced energy storage. Chemical Society Reviews, 2015, 44(19): 6684–6696

    Article  CAS  Google Scholar 

  97. Vosgueritchian M, Lipomi D J, Bao Z. Highly conductive and transparent PEDOT:PSS films with a fluorosurfactant for stretchable and flexible transparent electrodes. Advanced Functional Materials, 2012, 22(2): 421–428

    Article  CAS  Google Scholar 

  98. Wang C, Zheng W, Yue Z, et al. Buckled, stretchable polypyrrole electrodes for battery applications. Advanced Materials, 2011, 23 (31): 3580–3584

    Article  CAS  Google Scholar 

  99. Markvicka E J, Bartlett M D, Huang X, et al. An autonomously electrically self-healing liquid metal-elastomer composite for robust soft-matter robotics and electronics. Nature Materials, 2018, 17(7): 618–624

    Article  CAS  Google Scholar 

  100. Wang H, Yao Y, He Z, et al. A highly stretchable liquid metal polymer as reversible transitional insulator and conductor. Advanced Materials, 2019, 31(23): 1901337

    Article  Google Scholar 

  101. Hong S, Lee H, Lee J, et al. Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Advanced Materials, 2015, 27(32): 4744–4751

    Article  CAS  Google Scholar 

  102. Ahmed M F, Li Y, Zeng C. Stretchable and compressible piezoresistive sensors from auxetic foam and silver nanowire. Materials Chemistry and Physics, 2019, 229: 167–173

    Article  CAS  Google Scholar 

  103. Huang K, Chen M, He G, et al. Stretchable microwave absorbing and electromagnetic interference shielding foam with hierarchical buckling induced by solvent swelling. Carbon, 2020, 157: 466–477

    Article  CAS  Google Scholar 

  104. Yu Y, Zeng J, Chen C, et al. Three-dimensional compressible and stretchable conductive composites. Advanced Materials, 2014, 26(5): 810–815

    Article  CAS  Google Scholar 

  105. Jiang D H, Liao Y C, Cho C J, et al. Facile fabrication of stretchable touch-responsive perovskite light-emitting diodes using robust stretchable composite electrodes. ACS Applied Materials & Interfaces, 2020, 12(12): 14408–14415

    Article  CAS  Google Scholar 

  106. Wang Y, Wang Y, Yang Y. Graphene-polymer nanocomposite-based redox-induced electricity for flexible self-powered strain sensors. Advanced Energy Materials, 2018, 8(22): 1800961

    Article  Google Scholar 

  107. El-Atab N, Qaiser N, Bahabry R, et al. Corrugation enabled asymmetrically ultrastretchable (95%) monocrystalline silicon solar cells with high efficiency (19%). Advanced Energy Materials, 2019, 9(45): 1902883

    Article  CAS  Google Scholar 

  108. Kubo M, Li X, Kim C, et al. Stretchable microfluidic radiofrequency antennas. Advanced Materials, 2010, 22(25): 2749–2752

    Article  CAS  Google Scholar 

  109. Amjadi M, Yoon Y J, Park I. Ultra-stretchable and skin-mountable strain sensors using carbon nanotubes-Ecoflex nanocomposites. Nanotechnology, 2015, 26(37): 375501

    Article  Google Scholar 

  110. Kim S H, Jung S, Yoon I S, et al. Ultrastretchable conductor fabricated on skin-like hydrogel-elastomer hybrid substrates for skin electronics. Advanced Materials, 2018, 30(26): 1800109

    Article  Google Scholar 

  111. He S, Cao J, **e S, et al. Stretchable supercapacitor based on a cellular structure. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2016, 4(26): 10124–10129

    Article  CAS  Google Scholar 

  112. Moon I K, Ki B, Oh J. Three-dimensional porous stretchable supercapacitor with wavy structured PEDOT:PSS/graphene electrode. Chemical Engineering Journal, 2020, 392: 123794

    Article  CAS  Google Scholar 

  113. Wang X, Yang C, ** J, et al. High-performance stretchable supercapacitors based on intrinsically stretchable acrylate rubber/MWCNTs@conductive polymer composite electrodes. Journal of Materials Chemistry A: Materials for Energy and Sustainability, 2018, 6(10): 4432–4442

    Article  CAS  Google Scholar 

  114. Wen J, Li S, Zhou K, et al. Flexible coaxial-type fiber solid-state asymmetrical supercapacitor based on Ni3S2 nanorod array and pen ink electrodes. Journal of Power Sources, 2016, 324: 325–333

    Article  CAS  Google Scholar 

  115. Zhang L, Zhu P, Zhou F, et al. Flexible asymmetrical solid-state supercapacitors based on laboratory filter paper. ACS Nano, 2016, 10(1): 1273–1282

    Article  CAS  Google Scholar 

  116. He W, Wang C, Li H, et al. Ultrathin and porous Ni3S2/CoNi2S4 3D-network structure for superhigh energy density asymmetric supercapacitors. Advanced Energy Materials, 2017, 7(21): 1700983

    Article  Google Scholar 

  117. Chen C, Cao J, Wang X, et al. Highly stretchable integrated system for micro-supercapacitor with AC line filtering and UV detector. Nano Energy, 2017, 42: 187–194

    Article  CAS  Google Scholar 

  118. Chen X, Villa N S, Zhuang Y, et al. Stretchable supercapacitors as emergent energy storage units for health monitoring bioelectronics. Advanced Energy Materials, 2020, 10(4): 1902769

    Article  CAS  Google Scholar 

  119. Park J, Ahn D B, Kim J, et al. Printing of wirelessly rechargeable solid-state supercapacitors for soft, smart contact lenses with continuous operations. Science Advances, 2019, 5(12): eaay0764

    Article  CAS  Google Scholar 

  120. Yang J, Hong T, Deng J, et al. Stretchable, transparent and imperceptible supercapacitors based on Au@MnO2 nanomesh electrodes. Chemical Communications, 2019, 55(91): 13737–13740

    Article  CAS  Google Scholar 

  121. Yu J, Zhou J, Yao P, et al. A stretchable high performance all-in-one fiber supercapacitor. Journal of Power Sources, 2019, 440: 227150

    Article  CAS  Google Scholar 

  122. Xu T, Yang D, Fan Z, et al. Reduced graphene oxide/carbon nanotube hybrid fibers with narrowly distributed mesopores for flexible supercapacitors with high volumetric capacitances and satisfactory durability. Carbon, 2019, 152: 134–143

    Article  CAS  Google Scholar 

  123. Niu Z, Dong H, Zhu B, et al. Highly stretchable, integrated supercapacitors based on single-walled carbon nanotube films with continuous reticulate architecture. Advanced Materials, 2013, 25(7): 1058–1064

    Article  CAS  Google Scholar 

  124. Chen X, Huang H, Pan L, et al. Fully integrated design of a stretchable solid-state lithium-ion full battery. Advanced Materials, 2019, 31(43): 1904648

    Article  CAS  Google Scholar 

  125. Wang L, Choi W, Yoo K S, et al. Stretchable carbon nanotube dilatometer for in situ swelling detection of lithium-ion batteries. ACS Applied Energy Materials, 2020, 3(4): 3637–3644

    Article  CAS  Google Scholar 

  126. Zhang L, Qin X, Zhao S, et al. Advanced matrixes for binder-free nanostructured electrodes in lithium-ion batteries. Advanced Materials, 2020, 32(24): 1908445

    Article  CAS  Google Scholar 

  127. Chen D, Lou Z, Jiang K, et al. Device configurations and future prospects of flexible/stretchable lithium-ion batteries. Advanced Functional Materials, 2018, 28(51): 1805596

    Article  Google Scholar 

  128. Shi C, Wang T, Liao X, et al. Accordion-like stretchable Li-ion batteries with high energy density. Energy Storage Materials, 2019, 17: 136–142

    Article  Google Scholar 

  129. Yu Y, Luo Y, Wu H, et al. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale, 2018, 10(42): 19972–19978

    Article  CAS  Google Scholar 

  130. Kano S, Kim K, Fujii M. Fast-response and flexible nanocrystal-based humidity sensor for monitoring human respiration and water evaporation on skin. ACS Sensors, 2017, 2(6): 828–833

    Article  CAS  Google Scholar 

  131. Ouyang H, Tian J, Sun G, et al. Self-powered pulse sensor for antidiastole of cardiovascular disease. Advanced Materials, 2017, 29(40): 1703456

    Article  Google Scholar 

  132. Pang C, Koo J H, Nguyen A, et al. Highly skin-conformal microhairy sensor for pulse signal amplification. Advanced Materials, 2015, 27(4): 634–640

    Article  CAS  Google Scholar 

  133. Choi T Y, Hwang B U, Kim B Y, et al. Stretchable, transparent, and stretch-unresponsive capacitive touch sensor array with selectively patterned silver nanowires/reduced graphene oxide electrodes. ACS Applied Materials & Interfaces, 2017, 9(21): 18022–18030

    Article  CAS  Google Scholar 

  134. Oh S Y, Hong S Y, Jeong Y R, et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Applied Materials & Interfaces, 2018, 10(16): 13729–13740

    Article  CAS  Google Scholar 

  135. Yan H, Zhong M, Lv Z, et al. Stretchable electronic sensors of nanocomposite network films for ultrasensitive chemical vapor sensing. Small, 2017, 13(41): 1701697

    Article  Google Scholar 

  136. Trung T Q, Dang T M L, Ramasundaram S, et al. A stretchable strain-insensitive temperature sensor based on free-standing elastomeric composite fibers for on-body monitoring of skin temperature. ACS Applied Materials & Interfaces, 2019, 11(2): 2317–2327

    Article  CAS  Google Scholar 

  137. Jang N S, Kim K H, Ha S H, et al. Simple approach to high-performance stretchable heaters based on kirigami patterning of conductive paper for wearable thermotherapy applications. ACS Applied Materials & Interfaces, 2017, 9(23): 19612–19621

    Article  CAS  Google Scholar 

  138. Wang Y, Yu Z, Mao G, et al. Printable liquid-metal@PDMS stretchable heater with high stretchability and dynamic stability for wearable thermotherapy. Advanced Materials Technologies, 2019, 4(2): 1800435

    Article  Google Scholar 

  139. Souri H, Bhattacharyya D. Highly stretchable multifunctional wearable devices based on conductive cotton and wool fabrics. ACS Applied Materials & Interfaces, 2018, 10(24): 20845–20853

    Article  CAS  Google Scholar 

  140. Jang J, Hyun B G, Ji S, et al. Rapid production of large-area, transparent and stretchable electrodes using metal nanofibers as wirelessly operated wearable heaters. NPG Asia Materials, 2017, 9(9): e432

    Article  CAS  Google Scholar 

  141. Zhang M, Wang C, Liang X, et al. Weft-knitted fabric for ahighly stretchable and low-voltage wearable heater. Advanced Electronic Materials, 2017, 3(9): 1700193

    Article  Google Scholar 

  142. Sun W J, Xu L, Jia L C, et al. Highly conductive and stretchable carbon nanotube/thermoplastic polyurethane composite for wearable heater. Composites Science and Technology, 2019, 181: 107695

    Article  CAS  Google Scholar 

  143. Kim H, Seo M, Kim J W, et al. Highly stretchable and wearable thermotherapy pad with micropatterned thermochromic display based on Ag nanowire-single-walled carbon nanotube composite. Advanced Functional Materials, 2019, 29(24): 1901061

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jilin Province (20200201070JC) and the National Natural Science Foundation of China (Grant No. 21662038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chengri Yin or Zhenxing Yin.

Additional information

Disclosure of potential conflicts of interests

The authors declare no competing financial interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, X., Hou, Y. et al. A review on structures, materials and applications of stretchable electrodes. Front. Mater. Sci. 15, 54–78 (2021). https://doi.org/10.1007/s11706-021-0537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11706-021-0537-9

Keywords

Navigation