Log in

Detection of flunixin residues in milk using ATR- FTIR spectroscopy coupled with chemometrics

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Flunixin (usually formulated as flunixin meglumine (FLN)), a common non-steroidal anti-inflammatory drug (NSAID) given to cattle, raises human health concerns when it is present in milk. Maximum residue limit (MRL) of 10 µg/kg has been set by Food Safety and Standards Authority of India (FSSAI) for FLN residues in milk. Attenuated Total Reflectance- Fourier-Transform Mid-Infrared (FT-MIR) spectroscopy in conjunction with multivariate techniques was applied to detect the presence of FLN residues in milk. Samples of FLN, pure milk as well as milk samples spiked with FLN at concentrations (1, 5, 10, 20 and 50 µg/kg) below and above the MRL were analysed. ATR-FTIR measurements were conducted in the 4000 –400 cm− 1 wavenumber range, and the wavenumber regions (2942 − 2838, 1748 − 1734 and 1149 –1012 cm− 1) were selected based on the maximum variability in the intensity of peaks and chemometrics techniques such as Principal Component Regression (PCR), Partial Least Square Regression (PLSR), Principal Component Analysis (PCA) and Soft Independent Modeling of Class Analogy (SIMCA) were applied. The study concluded that the presence of parent drug- FLN residues in milk even at 1 µg/kg level (below MRL prescribed by regulatory bodies) can be detected using ATR-FT-MIR coupled with chemometrics.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

FLN:

Flunixin meglumine

ATR:

FTIR- Attenuated Total Reflectance- Fourier Transform Infrared

NSAID:

Non-Steroidal Anti-Inflammatory Drug

MIR:

Mid-Infrared

FSSAI:

Food Safety and Standards Authority of India

MRL:

Maximum Residue Limit

LOD:

Limit of Detection

LCMS:

Liquid Chromatography Mass Spectrometry

LC-MS/MS:

Liquid Chromatography Tandem Mass Spectrometry

HPLC:

High Performance Liquid Chromatography

LFIA:

Lateral Flow Immunoassay

R2 :

Coefficient of Determination

PC:

Principal Component

PCA:

Principal Component Analysis

PCR:

Principal Component Regression

PLSR:

Partial Least Squares Regression

RMSE:

Root Mean Square Error

SIMCA:

Soft Independent Modeling of Class Analogy

References

  1. E. Daeseleire, L. Mortier, H. De Ruyck, N. Geerts, Anal. Chim. Acta. (2003). https://doi.org/10.1016/S0003-2670(03)00577-4

    Article  Google Scholar 

  2. G.F. Sintes, R.M. Bruckmaier, O. Wellnitz, J. Dairy. Sci. (2020). https://doi.org/10.3168/jds.2020-18818

    Article  PubMed  Google Scholar 

  3. P.J. Gorden, M.D. Kleinhenz, R. Warner, P.K. Sidhu, J.F. Coetzee, J. Dairy. Sci. (2019). https://doi.org/10.3168/jds.2019-16639

    Article  PubMed  Google Scholar 

  4. O.L. Levionnois, T.K. Fosse, B. Ranheim, J. Vet. Pharmacol. Ther. (2018). https://doi.org/10.1111/jvp.12468

    Article  PubMed  Google Scholar 

  5. L. Lin, W. Jiang, L. Xu, L. Liu, S. Song, H. Kuang, Food Agric. Immunol. (2018). https://doi.org/10.1080/09540105.2017.1364710

    Article  Google Scholar 

  6. X. Chen, S. Peng, C. Liu, X. Zou, Y. Ke, W. Jiang, Food Agric. Immunol. (2019). https://doi.org/10.1080/09540105.2019.1577365

    Article  Google Scholar 

  7. P.K. Sidhu, R. Gehring, D.A. Mzyk, T. Marmulak, L.A. Tell, R.E. Baynes, J.E. Riviere, J. Am. Vet. Med. (2017). https://doi.org/10.2460/javma.250.2.182

    Article  Google Scholar 

  8. L.W. Kissell, T.L. Leavens, R.E. Baynes, J.E. Riviere, G.W. Smith, J. Am. Vet. Med. 246, 118–125 (2015)

    Article  CAS  Google Scholar 

  9. D.J. Smith, W.L. Shelver, R.E. Baynes, L. Tell, R. Gehring, M. Li, J.E. Riviere, J. Agric. Food Chem. (2015). https://doi.org/10.1021/acs.jafc.5b01509

    Article  PubMed  Google Scholar 

  10. A. Rubies, L. Guo, F. Centrich, M. Granados, Anal. Bioanal Chem. (2016). https://doi.org/10.1007/s00216-016-9679-5

    Article  PubMed  Google Scholar 

  11. FSSR, Food Safety and Standards (Contaminants, Toxins and Residues) Regulations, 2011 (Ministry of Health and Family Welfare, India, 2022). (Version 27th January 2022)

    Google Scholar 

  12. M. Pietruk, P. Jedziniak, M. Olejnik, Molecules, (2021) https://doi.org/10.3390/molecules26195892

  13. W.F. Feely, C. Chester-Yansen, K. Thompson, J.W. Campbell, P.L. Boner, D.D. Liu, L.S. Crouch, J. Agric. Food Chem. 50, 7308–7313 (2002)

    Article  CAS  PubMed  Google Scholar 

  14. D. Douglas, K. Banaszewski, R. Juskelis, F. Al-Taher, Y. Chen, J. Cappozzo, R.S. Salter, J. Food Prot. (2012). https://doi.org/10.4315/0362-028X.JFP-11-570

    Article  PubMed  Google Scholar 

  15. R. Fan, W. Zhang, Y. **, R. Zhao, C. Yang, Q. Chen, Y. Chen, Microchim. Acta. (2020). https://doi.org/10.1007/s00604-020-04338-z

    Article  Google Scholar 

  16. R. Saji, A. Ramani, K. Gandhi, R. Seth, R. Sharma, Food Humanity. (2024). https://doi.org/10.1016/j.foohum.2024.100239

    Article  Google Scholar 

  17. C. Pereira, L.C. Luiz, M.J.V. Bell, V. Anjos, J. Dairy. Res. Technol. (2020). https://doi.org/10.24966/DRT-9315/100014

    Article  Google Scholar 

  18. M. Tarapoulouzi, R. Kokkinofta, C.R. Theocharis, Food Sci. Nutr. (2020). https://doi.org/10.1002/fsn3.1603

    Article  PubMed  PubMed Central  Google Scholar 

  19. M. Bilal, Z. **aobo, M. Arslan, H.E. Tahir, Y. Sun, R.M. Aadil, J. Near Infrared Spectrosc. (2021). https://doi.org/10.1177/0967033520979425

    Article  Google Scholar 

  20. M. Bilal, Z. **aobo, M. Arslan, H.E. Tahir, M. Azam, Z. Junjun, S. Basheer, Vib. Spectrosc. (2020). https://doi.org/10.1016/j.vibspec.2020.103138

    Article  Google Scholar 

  21. B. Balan, A.S. Dhaulaniya, R. Jamwal, K.K. Sodhi, S. Kelly, A. Cannavan, D.K. Singh, Vib. Spectrosc. (2020). https://doi.org/10.1016/j.vibspec.2020.103033

    Article  Google Scholar 

  22. T.B. Coitinho, L.D. Cassoli, P.H.R. Cerqueira, H.K. da Silva, J.B. Coitinho, P.F. Machado, J. Food Sci. (2017). https://doi.org/10.1007/s13197-017-2680-y

    Article  Google Scholar 

  23. D.G. Conceição, B.H.R. Gonçalves, F.F.D. Hora, A.S. Faleiro, L.S. Santos, S.P. Ferrão, J. Braz Chem. Soc. (2019). https://doi.org/10.21577/0103-5053.20180208

    Article  Google Scholar 

  24. A.G. de Freitas, B.E. de Magalhães, L.A. Minho, D.J. Leão, L.S. Santos, S Augusto De Albuq. Fernandes J. Sci. Food Agric. (2021). https://doi.org/10.1002/jsfa.10799

    Article  Google Scholar 

  25. C.G. Harshitha, N. Sharma, R. Singh, R. Sharma, K. Gandhi, B. Mann, J. Food Sci. (2023). https://doi.org/10.1007/s13197-022-05587-x

    Article  Google Scholar 

  26. P. Jaiswal, S.N. Jha, A. Borah, A. Gautam, M.K. Grewal, G. **dal, Food Chem. (2015). https://doi.org/10.1016/j.foodchem.2014.07.010

    Article  PubMed  Google Scholar 

  27. P. Jaiswal, S.N. Jha, J. Kaur, A. Borah, H.G. Ramya, Food Chem. (2018). https://doi.org/10.1016/j.foodchem.2016.07.150

    Article  PubMed  Google Scholar 

  28. S. Jawaid, F.N. Talpur, S.T.H. Sherazi, S.M. Nizamani, A.A. Khaskheli, Food Chem. (2013). https://doi.org/10.1016/j.foodchem.2013.05.106

    Article  PubMed  Google Scholar 

  29. D.C. Ribeiro, H.A. Neto, J.S. Lima, D.C. de Assis, K.M. Keller, S.V. Campos, L.M. Fonseca, Heliyon. (2023) https://doi.org/10.1016/j.heliyon.2023.e12898

  30. S. Sen, Z. Dundar, O. Uncu, B. Ozen, Microchem J. (2021). https://doi.org/10.1016/j.microc.2021.106207

    Article  Google Scholar 

  31. S. Souhassou, M. Bassbasi, A. Hirri, F. Kzaiber, A. Oussama, Int. Food Res. J. 25, 1213–1218 (2018)

    CAS  Google Scholar 

  32. A.A. Spina, C. Ceniti, C. Piras, B. Tilocca, D. Britti, V.M. Morittu, J. Anim. Sci. Technol. (2022). https://doi.org/10.5187/jast.2022.e22

    Article  PubMed  PubMed Central  Google Scholar 

  33. K. Gandhi, R. Sharma, R. Seth, B. Mann, Appl. Food Res. (2022). https://doi.org/10.1016/j.afres.2021.100035

    Article  Google Scholar 

  34. K. Gandhi, R. Sharma, R. Seth, A. Ramani, B. Mann, Food Humanity. (2023). https://doi.org/10.1016/j.foohum.2023.10.021

    Article  Google Scholar 

  35. V. Sonvanshi, K. Gandhi, A. Ramani, R. Sharma, R. Seth, Results Chem. (2024). https://doi.org/10.1016/j.rechem.2024.101343

    Article  Google Scholar 

  36. R. Saji, K. Gandhi, R. Sharma, H.V. Raghu, Food Control. (2024). https://doi.org/10.1016/j.foodcont.2024.110491

    Article  Google Scholar 

  37. L.M. Casarrubias-Torres, O.G. Meza-Márquez, G. Osorio-Revilla, T. Gallardo-Velazquez, Acta Vet. Brno. (2018). https://doi.org/10.2754/avb201887020181

    Article  Google Scholar 

  38. D.L. Cassimiro, M. Kobelnik, C.A. Ribeiro, M.S. Crespi, N. Boralle, Thermochim Acta. (2012). https://doi.org/10.1016/j.tca.2011.11.030

    Article  Google Scholar 

  39. M.C. Dávila-Miliani, A. Dugarte-Dugarte, R.A. Toro, J.E. Contreras, H.A. Camargo, J.A. Henao, G. Díaz, de Delgado, Cryst. Growth Des. (2020). https://pubs.acs.org/doi/https://doi.org/10.1021/acs.cgd.0c00284

    Article  Google Scholar 

  40. Y. Xu, G. Yan, X. Wen, L. Wu, R. Deng, Q. Liang, J. He, Eur. J. Pharm. Sci. (2022). https://doi.org/10.1016/j.ejps.2021.106019

    Article  PubMed  Google Scholar 

  41. B. Balan, A.S. Dhaulaniya, R. Jamwal, A. Yadav, S. Kelly, A. Cannavan, D.K. Singh, Spectrochim Acta Mol. Biomol. Spectrosc. (2020). https://doi.org/10.1016/j.saa.2020.118628

    Article  Google Scholar 

  42. E. Dubreil-Chéneau, Y. Pirotais, M. Bessiral, B. Roudaut, E. Verdon, J. Chromatogr. A (2011). https://doi.org/10.1016/j.chroma.2011.06.006

    Article  PubMed  Google Scholar 

  43. P. Jedziniak, T. Szprengier-Juszkiewicz, K. Pietruk, E. Śledzińska, J. Żmudzki, Anal. Bioanal Chem. (2012). https://doi.org/10.1007/s00216-012-5860-7

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The first author acknowledges the financial support in the form of fellowship which was awarded by Department of Science and Technology- Innovation in Science Pursuit for Inspired Research, New Delhi (Fellow registration No. IF220211). The authors also acknowledge ICAR-National Dairy Research Institute, Karnal for providing the facilities.

Author information

Authors and Affiliations

Authors

Contributions

Rakendhu Saji: Sample preparation and analysis, data analysis, writing original draft. Kamal Gandhi: Conceptualization, Interpretation of spectral peaks, review. Rajan Sharma: Development of models, review and editing. Rajesh Bajaj: Supervision, review and editing. Bimlesh Mann: Supervision, review and editing. Akshay Ramani: Data analysis, review and editing.

Corresponding author

Correspondence to Kamal Gandhi.

Ethics declarations

Competing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saji, R., Gandhi, K., Sharma, R. et al. Detection of flunixin residues in milk using ATR- FTIR spectroscopy coupled with chemometrics. Food Measure (2024). https://doi.org/10.1007/s11694-024-02686-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11694-024-02686-5

Keywords

Navigation