Log in

Characterization of encapsulated riboflavin in plasmolyzed and non-plasmolyzed Saccharomyces cerevisiae yeast cells

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Riboflavin (RF) or vitamin B2 is susceptible to photodegradation. Encapsulation of sensitive components by modified yeast cells is a promising method for their widespread usage at industrial scale. Saccharomyces cerevisiae has been introduced as an appropriate carrier of bioactive compounds. The yeast cell comprises a phospholipid membrane that protects the core from the external environment. In this study, the effect of plasmolysis on efficiency of S. cerevisiae cells in encapsulation of RF were investigated. According to the results, plasmolysis increased the encapsulation efficiency (53.85% versus 58.22% for non-plasmolyzed and plasmolyzed yeast cells, respectively) and loading capacity (14.10 and 16.99% for non-plasmolyzed and plasmolyzed yeast cells, respectively). The loaded intact cells had a tied and intertwined structure while the loaded plasmolyzed cells were seen separately in the Scanning Electron Microscope images. According to the Transmission Electron Microscope images, plasmolysis did not destruct the yeast cells and the cell integrity was retained appropriately after the process but it increased the internal space for encapsulation. In X-ray diffraction analysis, RF had a crystalline structure and its encapsulation within the amorphous non-plasmolyzed and plasmolyzed yeast cells led to slight crystallinity in the structure of complex. The observed spectra of functional groups in Fourier Transform Infrared spectroscopy confirmed the successful entrapment of RF in the yeast cells. Plasmolysis depleted the cell contents susceptible to thermal process through which melting point of the yeast cells increased. Owing to the charged surface of yeast cells, they showed a burst release of RF in the simulated stomach (88% for non-plasmolyzed and 84% for plasmolyzed cells) and intestinal fluid (91% and 96% for non-plasmolyzed and plasmolyzed cells, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. R. Bou, S. Cofrades, F. Jiménez-Colmenero, LWT-Food Sci. Technol. 59, 621 (2014). https://doi.org/10.1016/j.lwt.2014.06.044

    Article  CAS  Google Scholar 

  2. N. Suwannasom, I. Kao, A. Pruß, R. Georgieva, H. Bäumler, Int. J. Mol. Sci. 21, 950 (2020). https://doi.org/10.3390/ijms21030950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D.J. McClements, L. Saliva-Trujillo, R. Zhang, Z. Zhang, L. Zou, M. Yao, H. **ao, Food Res. Int. (2016). https://doi.org/10.1016/j.foodres.2015.11.017

    Article  PubMed  Google Scholar 

  4. F. Diarrassouba, L. Liang, G. Remondetto, M. Subirade, Food Res. Int. 52, 557 (2013). https://doi.org/10.1016/j.foodres.2013.03.025

    Article  CAS  Google Scholar 

  5. D.A. Madalena, Ó.L. Ramos, R.N. Pereira, A.I. Bourbon, A.C. Pinheiro, F.X. Malcata, J.A. Teixeira, A.A. Vicente, Food Hydrocoll. 58, 89 (2016). https://doi.org/10.1016/j.foodhyd.2016.02.015

    Article  CAS  Google Scholar 

  6. H. Hu, X. Zhu, T. Hu, I.W.Y. Cheung, S. Pan, E.C.Y. Li-Chan, J. Funct. Foods. (2015). https://doi.org/10.1016/j.jff.2015.09.023

    Article  PubMed  PubMed Central  Google Scholar 

  7. A. Rapoport, I. Guzhova, L. Bernetti, P. Buzzini, M. Kieliszek, A.M. Kot, Metab. 11, 92 (2021). https://doi.org/10.3390/metabo

    Article  CAS  Google Scholar 

  8. S.M. Jafari, Release and Bioavailability of Nanoencapsulated Food IngredientsAcademic Press, (2020). Nanoencapsulation in the Food Industry. 5, [1 ed.] 0128156651, 9780128156650

  9. M. Saniani, L. Nateghi, M. Hshemiravan, J. Food Meas. Charact. 17, 3683 (2023). https://doi.org/10.1007/s11694-023-01902-y

    Article  Google Scholar 

  10. S. Beikzadeh, S. Shojaee-Aliabadi, E. Dadkhodazade, Z. Sheidaei, A.S. Abedi, L. Mirmoghtadaie, S.M. Hosseini, Appl. Food Biotechnol. 7, 11 (2020). https://doi.org/10.22037/afb.v7i1.25969

    Article  CAS  Google Scholar 

  11. H. Wang, J. Dang, M. Zheng, Adv. Compos. Hybrid. Mater. 6, 165 (2023). https://doi.org/10.1007/s42114-023-00733-1

    Article  CAS  Google Scholar 

  12. W. Liu, Q. Lin, S. Chen, Adv. Compos. Hybrid. Mater. 6, 149 (2023). https://doi.org/10.1007/s42114-023-00725-1

    Article  CAS  Google Scholar 

  13. J. Liu, N. Zheng, Z. Li, Adv. Compos. Hybrid. Mater. 5, 1899–1909 (2022). https://doi.org/10.1007/s42114-022-00515-1

    Article  CAS  Google Scholar 

  14. M.Y. TH.Yan, N. Nguyen, Adv. Compos. Hybrid. Mater. 6, 226 (2023). https://doi.org/10.1007/s42114-023-00811-4

    Article  CAS  Google Scholar 

  15. S. Jambhulkar, D. Ravichandran, V. Thippanna, D. Patil, Adv. Compos. Hybrid. Mater. 6(3) (2023). https://doi.org/10.1007/s42114-023-00672-x

  16. M. Kavosi, A. Mohammadi, S. Shojaee-Aliabadi, R. Khaksar, S.M. Hosseini, J. Sci. Food Agric. 98, 2490 (2018). https://doi.org/10.1002/jsfa.8696

    Article  CAS  PubMed  Google Scholar 

  17. B.N. Pham-Hoang, A. Voilley, Y. Waché, Colloids Surf. B Biointerfaces. 148, 220 (2016). https://doi.org/10.1016/j.colsurfb.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  18. S. Yousefi, P. Rajaei, L. Nateghi, H.R. Nodeh, L. Rashidi, Int. J. Biol. Macromol. 242, 124766 (2023). https://doi.org/10.1016/j.ijbiomac.2023.124766

    Article  CAS  PubMed  Google Scholar 

  19. E.I. Paramera, V.T. Karathanos, S.J. Konteles, Microencapsul. Food Ind. (2023). https://doi.org/10.1016/B978-0-12-821683-5.00002-9

    Article  Google Scholar 

  20. E.I. Paramera, S.J. Konteles, V.T. Karathanos, Food Chem. 125, 892 (2011). https://doi.org/10.1016/j.foodchem.2010.09.063

    Article  CAS  Google Scholar 

  21. K. Karaman, Lwt. 148, 111640 (2021). https://doi.org/10.1016/j.lwt.2021.111640

    Article  CAS  Google Scholar 

  22. E. Dadkhodazade, A. Mohammadi, S. Shojaee-Aliabadi, A.M. Mortazavian, L. Mirmoghtadaie, S.M. Hosseini, Food Biophys. 13, 404 (2018). https://doi.org/10.1007/s11483-018-9546-3

    Article  Google Scholar 

  23. E. Dadkhodazade, E. Khanniri, N. Khorshidian, S.M. Hosseini, A.M. Mortazavian, E. Moghaddas, Kia, Biotechnol. Prog. 37, e3138 (2021). https://doi.org/10.1002/btpr.3138

    Article  CAS  PubMed  Google Scholar 

  24. L.M. Dong, H.T.T. Hang, N.H.N. Tran, D.T.K. Thuy, Microbiol. Biotechnol. Lett. 48, 267 (2020). https://doi.org/10.4014/mbl.1912.12003

    Article  CAS  Google Scholar 

  25. E. Zade Ashkezary, M. Vazifedoost, L. Nateghi, Z. Didar, M. Moslemi, Iran. J. Chem. Chem. Eng. (2023). https://doi.org/10.30492/IJCCE.2023.1987100.5808

    Article  Google Scholar 

  26. C. Errenst, M. Petermann, A. Kilzer, J. Supercrit Fluids. 168, 105076 (2021). https://doi.org/10.1016/j.supflu.2020.105076

    Article  CAS  Google Scholar 

  27. Z. Takalloo, M. Nikkhah, R. Nemati, N. Jalilian, R.H. Sajedi, World J. Microbiol. Biotechnol. 36, 1 (2020). https://doi.org/10.1007/s11274-020-02840-3

    Article  CAS  Google Scholar 

  28. S. Jafarirad, L. Nateghi, M. Moslemi, K.P. Afshari, J. Food Meas. Charact. 1 (2023). https://doi.org/10.1007/s11694-023-02161-7

  29. H. Mirzaee, H. Ahmadi Gavlighi, M. Nikoo, C.C. Udenigwe, F. Khodaiyan, Food Sci. Nutr. 11, 1257 (2023). https://doi.org/10.1002/fsn3.3160

    Article  CAS  PubMed  Google Scholar 

  30. A.-S.Y. Mohammed, A.K.F. Dyab, F. Taha, A.I.A. Abd El-Mageed, Mater. Sci. Eng. C 128, 112271 (2021). https://doi.org/10.1016/j.msec.2021.112271

    Article  CAS  Google Scholar 

  31. A. Rezvankhah, M.S. Yarmand, B. Ghanbarzadeh, H. Mirzaee, J. Food Process. Preserv. 45 (2021). https://doi.org/10.1111/jfpp.15932. e15932

  32. H. Mirzaee, F. Khodaiyan, J.F. Kennedy, S.S. Hosseini, Carbohydr. Polym. Technol. Appl. 1, 100004 (2020). https://doi.org/10.1016/j.carpta.2020.100004

    Article  Google Scholar 

  33. N. Haghighatpanah, H. Mirzaee, F. Khodaiyan, J.F. Kennedy, A. Aghakhani, S.S. Hosseini, K. Jahanbin, Int. J. Biol. Macromol. 152, 305 (2020). https://doi.org/10.1016/j.ijbiomac.2020.02.226

    Article  CAS  PubMed  Google Scholar 

  34. A. Sultana, A. Miyamoto, Q. Lan Hy, Y. Tanaka, Y. Fushimi, H. Yoshii, J. Food Eng. 199, 36 (2017). https://doi.org/10.1016/j.jfoodeng.2016.12.002

    Article  CAS  Google Scholar 

  35. G.V. Gautério, R.M. da Silva, F.C. Karraz, M.A.Z. Coelho, B.D. Ribeiro, A.C. Lemes, Clean. Chem. Eng. 6, 100112 (2023). https://doi.org/10.1016/j.clce.2023.100112

    Article  Google Scholar 

  36. E.I. Paramera, S.J. Konteles, V.T. Karathanos, Food Chem. 125, 913 (2011). https://doi.org/10.1016/j.foodchem.2010.09.071

    Article  CAS  Google Scholar 

  37. K. Karaman, Food Chem. 313, 126129 (2020). https://doi.org/10.1016/j.foodchem.2019.126129

    Article  CAS  PubMed  Google Scholar 

  38. P. Chakraborty, P. Bairi, B. Roy, A.K. Nandi, RSC Adv. 4, 54684 (2014). https://doi.org/10.1039/C4RA09215E

    Article  CAS  Google Scholar 

  39. M.A. Sheraz, S.H. Kazi, S. Ahmed, Z. Anwar, I. Ahmad, Beilstein J. Org. Chem. 10208(10), 1999 (2014). https://doi.org/10.3762/bjoc.10.208

    Article  CAS  Google Scholar 

  40. R. Salari, B.S.F. Bazzaz, O. Rajabi, Z. Khashyarmanesh, DARU J. Pharm. Sci. 21, 1 (2013). http://www.darujps.com/content/21/1/73

    Article  Google Scholar 

  41. J. Wu, Y. Guan, Q. Zhong, Food Chem. 172, 121 (2015). https://doi.org/10.1016/j.foodchem.2014.09.059

    Article  CAS  PubMed  Google Scholar 

  42. A. Cruz-Gavia, C. Pérez-Alonso, C.E. Barrera-Díaz, J. Alvarez-Ramírez, H. Carrillo-Navas, Guadarrama-Lezama Food Hydrocoll. 82 (2018). https://doi.org/10.1016/j.foodhyd.2018.03.045

Download references

Acknowledgements

The authors would like to appreciate the Islamic Azad University of Iran for its support in development of experimental analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Nateghi.

Ethics declarations

Conflict of interest

None of the authors declared conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashkezary, E.Z., Vazifedoost, M., Nateghi, L. et al. Characterization of encapsulated riboflavin in plasmolyzed and non-plasmolyzed Saccharomyces cerevisiae yeast cells. Food Measure 18, 4323–4333 (2024). https://doi.org/10.1007/s11694-024-02496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02496-9

Keywords

Navigation