Log in

Bioactive compounds and antioxidant potential determination in callus tissue as compared to leaf, stem and root tissue of Carica papaya cv. Red Lady 786

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Carica papaya, commonly known as papaya, is a succulent herbaceous plant renowned for its rich natural antioxidant content in various parts including leaves, fruits, seeds, and roots. In this finding, comprehensive research was carried out to estimate the antioxidant activities of ethanolic extracts from aerial components (leaf and stem), rhizosphere components (roots) as well as in vitro regenerated callus of the Red Lady 786 cultivar. The primary objective was to optimize the extraction conditions that yielded the maximum recovery of TPC (total phenolic content), TFC (total flavonoid content), and antioxidant potential, specifically in relation to RSA (radical scavenging activity). The study revealed a range of total phenolics (26.76 to 108.8 mg gallic acid g− 1 dw), flavonoids (13.05 to 47.54 mg rutin g− 1 dw), and radical scavenging activity (8.51 to 48.3%) across different tissue of Red Lady 786. Notably, maximum contents of phenolics, flavonoids, and antioxidant properties were recorded in leaves of Red Lady 786, extracted using conditions involving 50% ethanol at 50 °C for 30 min. Correlation analysis further unveiled a positive correlation among TPC, TFC, and RSA within the leaves, stem, root, and callus tissues. The results of this study suggest that the leaf, stem, root, and callus tissues of C. papaya have significant potential for the production of bioactive compounds.

Research Highlights

Total phenols, flavonoid content, and antioxidant activity of leaf, stem, and root extracts is compared with callus extracts for the first time in Red Lady 786.

Evidence of substantial phenols, flavonoids, and antioxidant potential within callus extracts, with leaves exhibiting the highest efficacy.

Established in vitro callus cultures that could be used for mass propagation and production of bioactive compounds using bioresources to catalyze bioeconomy in a sustainable manner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data available on the request of authors.

Code availability

Not applicable.

References

  1. I. Alinas, J.J. Hueso, J. Cuevas, Agronomy, 11, 378 (2021). https://doi.org/10.3390/agronomy11020378

  2. A. Ali, S. Devarajan, M. Waly, M.M. Essa, M.S. Rahman, Natural Products and Bioactive Compounds in Disease Prevention, ed. by M.M. By, A. Essa, E. Manickavasagan, Sukumar (Nova Science Publishers, New York, 2011), pp. 34–42

    Google Scholar 

  3. P.S. Singh, S. Kumar, M.S. Tomar, R.K. Singh, P.K. Verma, A. Kumar, S. Kumar, A. Acharya, Biosc Biotech. Res. 4, 1115–1122 (2019). https://doi.org/10.21786/bbrc/12.4/35

    Article  Google Scholar 

  4. Q.V. Vuong, S. Hirun, P.D. Roach, M.C. Bowyer, P.A. Phillips, C.J. Scarlett, J. Herb. Med. 3, 104–111 (2013). https://doi.org/10.1016/j.hermed.2013.04.004

    Article  Google Scholar 

  5. B.V. Owoyele, O.M. Adebukola, A.A. Funmilayo, A.O. Soladoye, Inflammopharmacology. 16, 168–173 (2008). https://doi.org/10.1007/s10787-008-7008-0

    Article  CAS  PubMed  Google Scholar 

  6. N.L. Yembeau, P.C. Biapa, B. Chetcha, F.L. Nguelewou, C.F. Kengne, P.J. Nkwikeu, P.B. Telefo, C.A. Pieme, Invest. Med. Chem. Pharmacol. 1, 6 (2018). https://doi.org/10.4314/ijs.v22i3.5

    Article  Google Scholar 

  7. N. Otsuki, N.H. Dang, E. Kumagai, A. Kondo, S. Iwata, C. Morimoto, J. Ethnopharmacol. 127, 760–767 (2010). https://doi.org/10.1016/j.jep.2009.11.024

    Article  PubMed  Google Scholar 

  8. S.P. Singh, S.V. Mathan, A. Dheeraj, D. Tailor, R.P. Singh, A. Acharya, Cancer Res. 79, 3004 (2019). https://doi.org/10.1158/1538-7445.AM2019-3004

    Article  Google Scholar 

  9. M. Parle, A. Gurditta, Int. Res. J. Pharm. 2, 6–12 (2011)

    CAS  Google Scholar 

  10. T. Vij, Y. Prashar, J. Trop. Dis. 5, 1–6 (2015). https://doi.org/10.1016/S2222-1808(14)60617-4

    Article  Google Scholar 

  11. A. Sharma, R. Sharma, M. Sharma, M. Kumar, M.D. Barbhai, J.M. Lorenzo, S. Sharma, M.K. Samota, M. Atanassova, G. Caruso, M. Naushad, M Oxid. Med. Cell. Longev. (2022). https://doi.org/10.1155/2022/2451733

    Article  Google Scholar 

  12. A. Canini, D. Alesiani, G. D’Arcangelo, P. Tagliatesta, P J. Food Compost Anal. 20, 584–590 (2007). https://doi.org/10.1016/j.jfca.2007.03.009

    Article  CAS  Google Scholar 

  13. M. Abdollahi, A. Ranjbar, S. Shadnia, S. Nikfar, A. Rezaie, A Med. Sci. Monit. 10, 141–147 (2004)

    Google Scholar 

  14. S. Penckofer, D. Schwertz, K. Florczak, K J. Cardiovasc. Nurs. 16, 68–85 (2002). https://doi.org/10.1097/00005082-200201000-00007

    Article  Google Scholar 

  15. N. Asghar, S.A.R. Naqvi, Z. Hussain, N. Rasool, Z.A. Khan, S.A. Shahzad, T.A. Sherazi, M.R.S.A. Janjua, S.A. Nagra, M. Zia-Ul-Haq, H.Z. Jaafar, Chem. Cent. J. 10, 1–11 (2016). https://doi.org/10.1186/s13065-016-0149-0

    Article  CAS  Google Scholar 

  16. Q.W. Zhang, L.G. Lin, W.C. Ye, Chin. Med. 13, 1–26 (2018). https://doi.org/10.1186/s13020-018-0177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Mohammad, S.N.H. Abdul, Z. Wan, L.S. Chua, A.A. Mustaffa, N.A. Yunus, Sep. Purif. Rev. 45, 305–320 (2016). https://doi.org/10.1080/15422119.2016.1145395

    Article  Google Scholar 

  18. M. Hariono, R. Rollando, J. Karamoy, P. Hariyono, M. Atmono, M. Djohan, W. Wiwy, R. Nuwarda, C. Kurniawan, N. Salin, H. Wahab, H. Molecule, 25, 4691 (2020). https://doi.org/10.3390/molecules25204691

  19. Q.D. Do, A.E. Angkawijaya, P.L. Tran-Nguyen, L.H. Huynh, F.E. Soetaredjo, S. Ismadji, Y.H. Ju, J. Food Drug Anal. 22, 296–302 (2014). https://doi.org/10.1016/j.jfda.2013.11.001

    Article  CAS  PubMed  Google Scholar 

  20. A.M.A. Ali, M.E.A.M. El-Nour, S.M. Yagi, J. Genet. Eng. Biotechnol. 16, 677–682 (2018). https://doi.org/10.1016/j.jgeb.2018.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  21. M. Kavit, B.K. Jain, Int. J. Bot. Stud. 5, 271–274 (2020)

    Google Scholar 

  22. A. Parsaeimehr, E. Sargsyan, K. Javidnia, Molecule. 15, 1668–1678 (2010). https://doi.org/10.3390/molecules15031668

    Article  CAS  Google Scholar 

  23. M.M. Ibrahim, N.M. Arafa, U.I. Aly, Egypt. Pharm. J. 17, 32 (2018). https://doi.org/10.4103/epj.epj_38_17

    Article  Google Scholar 

  24. Y.H. Pandy, M. Bakshi, I.J. Agri, Anim. Prod. 3, 25–32 (2023). https://doi.org/10.55529/ijaap.33.25.32

    Article  Google Scholar 

  25. H. Colgecen, U. Koca, G. Toker, Turk. J. Biol. 35, 513–520 (2011). https://doi.org/10.3906/biy-0911-161

    Article  Google Scholar 

  26. F.C. Steward, M.O. Mapes, K. Mears, Am. J. Bot. 45, 705–708 (1958). https://doi.org/10.1002/j.1537-2197.1958.tb10599.x

    Article  Google Scholar 

  27. P. Kumar, M. Partap, D. Rana, P. Kumar, P. A.R. Warghat, Ind. Crops Prod. 145, 111945 (2020). https://doi.org/10.1016/j.indcrop.2019.111945

  28. T. Murashige, F. Skoog, Physiol. Plant 15, 474 (1962). https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

  29. R.L. Prior, X.L. Wu, K. Schaich, J. Agric. Food Chem. 53, 4290 (2005).https://doi.org/10.1021/jf0502698

  30. J. Zeng, W. Cai, W. Yang, W. Wu, Sugar Tech. 15, 209 (2013). https://doi.org/10.1007/s12355-013-0210-4

  31. X. Pan, J.F. Kadla, K. Ehara, N. Gilkes, J.N. Saddler, J. Agric. Food Chem. 54, 5806–5813 (2006). https://doi.org/10.1021/jf0605392

  32. J.S. Yang, T.A. Yu, Y.H. Cheng, S.D. Yeh, Plant. Cell. Rep. 15, 459–464 (1996). https://doi.org/10.1007/BF00232974

    Article  CAS  PubMed  Google Scholar 

  33. S. Palei, D.K. Dash, G.R. Rout, J. Pharm. Phytochem. 8, 1954–1956 (2019)

    CAS  Google Scholar 

  34. R.B. Malabadi, S.V. Kumar, G.S. Mulgund, K. Nataraja, Res. Biotechnol. 2, 40–55 (2011)

    Google Scholar 

  35. N. Malik, R.S. Sengar, M.K. Yadav, S.K. Singh, G. Singh, M. Kumar, Int. J. Curr. Microbiol. App Sci. 8, 1217–1225 (2019). https://doi.org/10.20546/ijcmas.2019.807.145

    Article  CAS  Google Scholar 

  36. H.M. Ali, T. Khan, M.A. Khan, N. Ullah, Appl. Biochem. Biotechnol. 69, 2624–2640 (2022). https://doi.org/10.1002/bab.2311

    Article  CAS  Google Scholar 

  37. M.C. Mok, D.W. Mok, Physiol. Plant. 65, 427–432 (1985). https://doi.org/10.1111/j.1399-3054.1985.tb08668.x

    Article  CAS  Google Scholar 

  38. H. Sakakibara, Annu. Rev. Plant. Biol. 57, 431–449 (2006). https://doi.org/10.1146/annurev.arplant.57.032905.105231

    Article  CAS  PubMed  Google Scholar 

  39. M.F. .Fadzilah, S.I. Zubairi, N.Z. Abidin, Z.M. Kasim, A. Lazim, Arab. J. Chem. 13, 7829–7842 (2020). https://doi.org/10.1016/j.arabjc.2020.09.014

    Article  CAS  Google Scholar 

  40. L. Puramshetti, S.K. Giri, D. Mohapatra, M.K. Tripathi, A. Kate, M. Kumar, J. Pharm. Innov. 11, 4403–4406 (2022)

    Google Scholar 

  41. J.S. Park, Z.K. Seong, M.S. Kim, J.H. Ha, K.B. Moon, H.J. Lee, H.K. Lee, J.H. Jeon, S.U. Park, H.S. Kim, Plants. 9, 688 (2020). https://doi.org/10.3390/plants9060688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. R. Kaur, P. Manchanda, K. Bhushan, A. Kalia, G. S. Sidhu, Agri. Res. J. 59, 725-729 (2022). https://doi.org/10.1007/s11694-021-01176-2

  43. P. Manchanda, H. Kaur, R.K. Mankoo, A. Kaur, J. Kaur, S. Kaur, G.S. Sidhu, J. Food Measur. Charac. 16, 461-470 (2022). https://doi.org/10.1007/s11694-022-01695-6

  44. R. Zhang, J. Lv, J. Yu, H. **ong, P. Chen, H. Cao, J.J. John Martin, Int. J. Fruit Sci. 22, 438–452 (2022). https://doi.org/10.1080/15538362.2022.2047138

    Article  CAS  Google Scholar 

  45. P. Manchanda, A. Kalia, G.S. Sidhu, H.S. Rattanpal, K. Kaur, S. Kaur, Indian J. Agri Sci. 90, 80–85 (2020). https://doi.org/10.56093/ijas.v90il.98546

    Article  CAS  Google Scholar 

  46. N. Turkmen, F. Sari, Y.S. Velioglu, Food Chem. 99, 835–841 (2006). https://doi.org/10.1016/j.foodchem.2005.08.034

    Article  CAS  Google Scholar 

  47. J. Dai, R.J. Mumper, Molecules. 15, 7313–7352 (2010). https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. R. Kaur, P. Manchanda, G.S. Sidhu, J. Food Meas. Charact. 1–10 (2022). https://doi.org/10.1007/s11694-021-01176-2

  49. B.C. Mello, J.C.C. Petrus, M.D. Hubinger, J. Food Eng. 96, 533–539 (2010). https://doi.org/10.1016/j.jfoodeng.2009.08.040

    Article  CAS  Google Scholar 

  50. K. Pobiega, K. Kraśniewska, M. Gniewosz, Trends Food Sci. 83, 53–62 (2019). https://doi.org/10.1016/j.tifs.2018.11.007

    Article  CAS  Google Scholar 

  51. Q.V. Vuong, J.B. Golding, C.E. Stathopoulos, M.H. Nguyen, P.D. Roach, J. Sep. Sci. 34, 3099-3106 (2011). https://doi.org/10.1002/jssc.201000863

  52. R. Kaur, P. Manchanda, G.S. Sidhu, Ind. J. Agric. Sci. 90, 1205 (2020). https://doi.org/10.56093/ijas.v90i6.104803

  53. M.H. Alu’datt, I. Alli, K. Ereifej, M.N. Alhamad, A. Alsaad, T. Rababeh, Nat. Prod. Res. 25, 876–889 (2011). https://doi.org/10.1080/14786419.2010.489048

    Article  CAS  PubMed  Google Scholar 

  54. T.S. Ballard, P. Mallikarjunan, K. Zhou, S.F. O’Keefe, J. Agric. Food Chem. 57, 3064–3072 (2009). https://doi.org/10.1021/jf8030925

    Article  CAS  PubMed  Google Scholar 

  55. M. Pinelo, M. Rubilar, M. Jerez, J. Sineiro, M.J. Núñez, J. Agric. Food Chem. 53, 2111–2117 (2005). https://doi.org/10.1021/jf0488110

    Article  CAS  PubMed  Google Scholar 

  56. V. Nepote, N.R. Grosso, C.A. Guzman, J. Sci. Food Agric. 85, 33–38 (2005). https://doi.org/10.1002/jsfa.1933

    Article  CAS  Google Scholar 

  57. G. Srikanth, S.M. Babu, C.H.N. Kavitha, M.B. Rao, N. Vijaykumar, C.H. Pradeep, Res. J. Pharm. Biol. Chem. Sci. 1, 59–65 (2010)

    Google Scholar 

  58. A.M. Maisarah, N.B. Amira, R. Asmah, O. Fauziah, Int. Food Res. J. 20, 1043 (2013)

    Google Scholar 

  59. S.J. Jia, H.H. Zhang, H. Zhang, C. Liu, S.R. Chen, L.L. Tang, J.L. Wang, Food Sci. 40, 227–233 (2019)

    Google Scholar 

  60. P. Manchanda, H. Kaur, R.K. Mankoo, J. Kaur, M. Kaur, G.S. Sidhu, J. Food Measur Charac. 26, 1–11 (2023). https://doi.org/10.1007/s11694-023-02111-3

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Director, School of Agricultural Biotechnology, College of Agriculture, Punjab Agricultural University, Ludhiana, India for their support in providing funding and infrastructure to carry out the research work.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

P.M. and R.K.M. designed the experiment; V. wrote the manuscript; P.M. performed data analysis and wrote the manuscript; R.K.M. performed data analysis and reviewed the manuscript; V. performed in vitro culturing of Red Lady 786 and induced callus from various explants of plant; G.S.S. provided plant material for the study and proofread the manuscript.

Corresponding author

Correspondence to Ramandeep Kaur Mankoo.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

All authors approve the publication of this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vishal, Manchanda, P., Sidhu, G.S. et al. Bioactive compounds and antioxidant potential determination in callus tissue as compared to leaf, stem and root tissue of Carica papaya cv. Red Lady 786. Food Measure 18, 2331–2344 (2024). https://doi.org/10.1007/s11694-024-02366-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-024-02366-4

Keywords

Navigation