Log in

Functional and microstructural characteristics of chitin extracted from field cricket, house cricket, and black soldier fly cocoons

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

Chitin from crustaceans is used in food, pharmaceutical, medical, agricultural and environmental sectors. Edible insects’ chitin is an untapped resource since edible insects have a high biodiversity and considerable amounts of chitin. Therefore, this study aimed at characterizing the functional properties and microstructure of chitin extracted from House cricket (Acheta domesticus), field cricket (Gryllus bimaculatus) and black soldier fly cocoons (Hermetica illucens) and compared with shrimp chitin (commercial). Chitin was chemically extracted and the functional groups were determined by Fourier Transform Infrared Spectroscopy (FTIR). Solubility, emulsion capacity, Water Holding Capacity, Fat Binding Capacity, degree of deacetylation and purity of the extracted chitin were also determined. Based on the FTIR spectra the extracted chitin showed the characteristic functional groups i.e. O–H stretch, C=O stretch, N–H bend, CH2 ending and CH3 deformation, C–N stretch and C–O–C stretch. Chitin extracted from Gryllus bimaculatus recorded the highest values in fat absorption capacity (780.14%), emulsion capacity (65.67%) and emulsion stability (65.67%). Chitin extracted from, Acheta domesticus was more soluble in water as compared to the commercial chitin. The highest level of deacetylation was reported in Hermetia illucens chitin (66.2%) while Acheta domesticus chitin had the least value (47.1%). The commercial chitin and Gryllus bimaculatus had the highest values for purity followed by Hermetia illucens. The microstructure images showed presence of pores and fibers in all the chitin samples. In conclusion, the insect chitin had characteristics similar to commercial chitin and are thus a suitable alternative in industrial application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. E.B. Ibitoye, I.H. Lokman, M.N.M. Hezmee, Y.M. Goh, A.B.Z. Zuki, A.A. Jimoh, Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed. Mater. 13, 1–12 (2018). https://doi.org/10.1088/1748-605X/aa9dde

    Article  Google Scholar 

  2. T. Philibert, B.H. Lee, N. Fabien, Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl. Biochem. Biotechnol. 181, 1314–1337 (2017). https://doi.org/10.1007/s12010-016-2286-2

    Article  CAS  PubMed  Google Scholar 

  3. F. Shahidi, R. Abuzaytoun, Chitin, chitosan, and co-products: chemistry, production, applications, and health effects. Adv. Food Nutr. Res. 49, 93–137 (2005)

    Article  CAS  PubMed  Google Scholar 

  4. M. Zubair, M. Arshad, A. Ullah, in Handbook of Chitin and Chitosan (Elsevier Inc, 2020), pp. 773–809

  5. K. Azuma, T. Osaki, S. Minami, Y. Okamoto, Anticancer and anti-inflammatory properties of chitin and chitosan Oligosaccharides. J. Funct. Biomater. 6, 33–49 (2015). https://doi.org/10.3390/jfb6010033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Nwe, S. Chandrkrachang, W.F. Stevens, T. Maw, T.K. Tan, E. Khor, S.M. Wong, Production of fungal chitosan by solid state and submerged fermentation. Carbohydr. Polym. 49, 3–5 (2002)

    Article  Google Scholar 

  7. F. Tajdini, M.A. Amini, N. Nafissi-Varcheh, M.A. Faramarzi, Production, physiochemical and antimicrobial properties of fungal chitosan from Rhizomucor miehei and Mucor racemosus. Int. J. Biol. Macromol. 47, 180–183 (2010). https://doi.org/10.1016/j.ijbiomac.2010.05.002

    Article  CAS  PubMed  Google Scholar 

  8. S. Liu, J. Sun, L. Yu, C. Zhang, J. Bi, F. Zhu, M. Qu, C. Jiang, Q. Yang, Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 17, 4604–4611 (2012). https://doi.org/10.3390/molecules17044604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. S. Crognale, C. Russo, M. Petruccioli, A. D’annibale, Chitosan production by fungi: current state of knowledge, future opportunities and constraints. Fermentation (2022). https://doi.org/10.3390/fermentation8020076

    Article  Google Scholar 

  10. M. Triunfo, E. Tafi, A. Guarnieri, R. Salvia, C. Scieuzo, T. Hahn, S. Zibek, A. Gagliardini, L. Panariello, M.B. Coltelli, A. De Bonis, P. Falabella, Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci. Rep. 12, 1–17 (2022). https://doi.org/10.1038/s41598-022-10423-5

    Article  CAS  Google Scholar 

  11. H. Greven, M. Kaya, I. Sargin, T. Baran, R. Møbjerg Kristensen, M. Vinther Sørensen, Characterisation of chitin in the cuticle of a velvet worm (Onychophora). Turk. J. Zool. 43, 416–424 (2019). https://doi.org/10.3906/zoo-1903-37

    Article  CAS  Google Scholar 

  12. H. Wang, K. ur Rehman, W. Feng, D. Yang, R. ur Rehman, M. Cai, J. Zhang, Z. Yu, L. Zheng, Physicochemical structure of chitin in the develo** stages of black soldier fly. Int. J. Biol. Macromol. 149, 901–907 (2020). https://doi.org/10.1016/j.ijbiomac.2020.01.293

    Article  CAS  PubMed  Google Scholar 

  13. L. Soetemans, M. Uyttebroek, L. Bastiaens, Characteristics of chitin extracted from black soldier fly in different life stages. Int. J. Biol. Macromol. 165, 3206–3214 (2020). https://doi.org/10.1016/j.ijbiomac.2020.11.041

    Article  CAS  PubMed  Google Scholar 

  14. M.S. Benhabiles, R. Salah, H. Lounici, N. Drouiche, M.F.A. Goosen, N. Mameri, Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29, 48–56 (2012). https://doi.org/10.1016/j.foodhyd.2012.02.013

    Article  CAS  Google Scholar 

  15. M.D.A. Finke, Estimate of chitin in raw whole insects. Zoo Biol. 26, 105–115 (2007). https://doi.org/10.1002/zoo

    Article  CAS  PubMed  Google Scholar 

  16. A. Hirsch, Y.H. Cho, Y.H.B. Kim, O.G. Jones, Contributions of protein and milled chitin extracted from domestic cricket powder to emulsion stabilization. Curr. Res. Food Sci. 1, 17–23 (2019). https://doi.org/10.1016/j.crfs.2019.09.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. I. Aranaz, M. Mengibar, R. Harris, I. Panos, B. Miralles, N. Acosta, G. Galed, A. Heras, Functional characterization of chitin and chitosan. Curr. Chem. Biol. 3, 203–230 (2012). https://doi.org/10.2174/2212796810903020203

    Article  Google Scholar 

  18. M.V. Tzoumaki, T. Moschakis, E. Scholten, C.G. Biliaderis, In vitro lipid digestion of chitin nanocrystal stabilized o/w emulsions. Food Funct. 4, 121–129 (2013). https://doi.org/10.1039/c2fo30129f

    Article  CAS  PubMed  Google Scholar 

  19. P. Charoenvuttitham, J. Shi, G.S. Mittal, Chitin extraction from black tiger shrimp (Penaeus monodon) waste using organic acids. Sep. Sci. Technol. 41, 1135–1153 (2006). https://doi.org/10.1080/01496390600633725

    Article  CAS  Google Scholar 

  20. N. Van Toan, Production of chitin and chitosan from partially autolyzed shrimp shell materials. Open. Biomater. J. 1, 21–24 (2009)

    Article  Google Scholar 

  21. T.S. Trung, W.W. Thein-Han, N.T. Qui, C.H. Ng, W.F. Stevens, Functional characteristics of shrimp chitosan and its membranes as affected by the degree of deacetylation. Bioresour. Technol. 97, 659–663 (2006). https://doi.org/10.1016/j.biortech.2005.03.023

    Article  CAS  PubMed  Google Scholar 

  22. Y.S. Puvvada, S. Vankayalapati, S. Sukhavasi, Extraction of chitin from chitosan from exoskeleton of shrimp for application in the pharmaceutical industry. Int. Curr. Pharm. J. 1, 258–263 (2012)

    Article  CAS  Google Scholar 

  23. W. Sajomsang, P. Gonil, Preparation and characterization of α-chitin from cicada sloughs. Mater. Sci. Eng. C 30, 357–363 (2010). https://doi.org/10.1016/j.msec.2009.11.014

    Article  CAS  Google Scholar 

  24. M. Naczk, L.J. Rubin, F. Shahidi, Functional properties and phytate content of pea protein preparations. J. Food Sci. 51, 1245–1247 (1986). https://doi.org/10.1111/j.1365-2621.1986.tb13096.x

    Article  CAS  Google Scholar 

  25. Cereals and Grains Association, in AACC Approved Methods of Analysis, 11th edn. (AACC, 2000), pp. 3–4

  26. M.J.Y.L. Humbert, ES and FWS, Certain functional properties sunflower meal products. J. Food Sci. 39, 5–7 (1974)

    Google Scholar 

  27. R. Hussain, M. Iman, T.K. Maji, Determination of degree of deacetylation of chitosan and their effect on the release behavior of essential oil from chitosan and chitosan-gelatin complex microcapsules. Int. J. Adv. Eng. Appl. 2, 4–12 (2013)

    Google Scholar 

  28. E.I. Díaz-Rojas, W.M. Argüelles-Monal, I. Higuera-Ciapara, J. Hernández, J. Lizardi-Mendoza, F.M. Goycoolea, Determination of chitin and protein contents during the isolation of chitin from shrimp waste. Macromol. Biosci. 6, 340–347 (2006). https://doi.org/10.1002/mabi.200500233

    Article  CAS  PubMed  Google Scholar 

  29. E.B. Ibitoye, I.H. Lokman, M.N.M. Hezmee, Y.M. Goh, A.B.Z. Zuki, A.A. Jimoh, Extraction and physicochemical characterization of chitin and chitosan isolated from house cricket. Biomed. Mater. (2018). https://doi.org/10.1088/1748-605X/aa9dde

    Article  PubMed  Google Scholar 

  30. M. Kaya, S. Erdogan, A. Mol, T. Baran, Comparison of chitin structures isolated from seven Orthoptera species. Int. J. Biol. Macromol. 72, 797–805 (2015). https://doi.org/10.1016/j.ijbiomac.2014.09.034

    Article  CAS  PubMed  Google Scholar 

  31. S. Kumari, P. Rath, A. Sri Hari Kumar, T.N. Tiwari, Extraction and characterization of chitin and chitosan from fishery waste by chemical method. Environ. Technol. Innov. 3, 77–85 (2015). https://doi.org/10.1016/j.eti.2015.01.002

    Article  Google Scholar 

  32. A.T. Paulino, J.I. Simionato, J.C. Garcia, J. Nozaki, Characterization of chitosan and chitin produced from silkworm crysalides. Carbohydr. Polym. 64, 98–103 (2006). https://doi.org/10.1016/j.carbpol.2005.10.032

    Article  CAS  Google Scholar 

  33. D. Purkayastha, S. Sarkar, Physicochemical structure analysis of chitin extracted from pupa exuviae and dead imago of wild Black soldier fly (Hermetia illucens). J. Polym. Environ. 28, 445–457 (2020). https://doi.org/10.1007/s10924-019-01620-x

    Article  CAS  Google Scholar 

  34. A.M. Grumezescu, A. Maria, Therapeutic, Probiotic, and Unconventional Foods (Academic Press, Cambridge, 2018)

    Google Scholar 

  35. Y.I. Cho, H.K. No, S.P. Meyers, Physicochemical characteristics and functional properties of various commercial chitin and chitosan products. J. Agric. Food Chem. 46, 3839–3843 (1998). https://doi.org/10.1021/jf971047f

    Article  CAS  Google Scholar 

  36. D. Knorr, Functional properties of chitin and chitosan. J. Food Sci. 47, 593–595 (1982). https://doi.org/10.1111/j.1365-2621.1982.tb10131.x

    Article  CAS  Google Scholar 

  37. L. Sampath, S. Ngasotter, P. Layana, A.K. Balenge, B.B. Nayak, K.A.M. Xavier, Effect of chemical treatment duration on physicochemical, rheological, and functional properties of colloidal chitin. Food Hydrocoll. Health 2, 100091 (2022)

    Article  Google Scholar 

  38. N.H. Marei, E.A. El-Samie, T. Salah, G.R. Saad, A.H.M. Elwahy, Isolation and characterization of chitosan from different local insects in Egypt. Int. J. Biol. Macromol. 82, 871–877 (2016). https://doi.org/10.1016/j.ijbiomac.2015.10.024

    Article  CAS  PubMed  Google Scholar 

  39. F. Nessa, S. Masum, M. Asaduzzaman, S.K. Roy, A process for the preparation of chitin and chitosan from prawn shell waste. Bangladesh J. Sci. Ind. Res. 45, 323–330 (2010).

    Article  CAS  Google Scholar 

  40. N. Panith, J. Wichaphon, S. Lertsiri, N. Niamsiri, Effect of physical and physicochemical characteristics of chitosan on fat-binding capacities under in vitro gastrointestinal conditions. LWT 71, 25–32 (2016). https://doi.org/10.1016/j.lwt.2016.03.013

    Article  CAS  Google Scholar 

  41. J. Liu, J. Zhang, W. **a, Hypocholesterolaemic effects of different chitosan samples in vitro and in vivo. Food Chem. 107, 419–425 (2008). https://doi.org/10.1016/j.foodchem.2007.08.044

    Article  CAS  Google Scholar 

  42. Y. Huang, Y. Tsai, Extraction of chitosan from squid pen waste by high hydrostatic pressure: effects on physicochemical properties and antioxidant activities of chitosan. Int. J. Biol. Macromol. 160, 677–687 (2020). https://doi.org/10.1016/j.ijbiomac.2020.05.252

    Article  CAS  PubMed  Google Scholar 

  43. G. Ru, S. Wu, X. Yan, B. Liu, P. Gong, L. Wang, J. Feng, Inverse solubility of chitin/chitosan in aqueous alkali solvents at low temperature. Carbohydr. Polym. 206, 487–492 (2019). https://doi.org/10.1016/j.carbpol.2018.11.016

    Article  CAS  PubMed  Google Scholar 

  44. M. Mahdy Samar, M.H. El-Kalyoubi, M.M. Khalaf, M.M. Abd El-Razik, Physicochemical, functional, antioxidant and antibacterial properties of chitosan extracted from shrimp wastes by microwave technique. Ann. Agric. Sci. 58, 33–41 (2013). https://doi.org/10.1016/j.aoas.2013.01.006

    Article  Google Scholar 

  45. M.S. Hossain, A. Iqbal, Production and characterization of chitosan from shrimp waste. J. Bangladesh Agric. Univ. 12, 153–160 (2014)

    Article  Google Scholar 

  46. K. Kurita, Chitin and chitosan: functional biopolymers from marine crustaceans. Mar. Biotechnol. 8, 203–226 (2006). https://doi.org/10.1007/s10126-005-0097-5

    Article  CAS  Google Scholar 

  47. M. Rinaudo, Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31, 603–632 (2006). https://doi.org/10.1016/j.progpolymsci.2006.06.001

    Article  CAS  Google Scholar 

  48. C. Gartner, C.A. Peláez, B.L. López, Characterization of chitin and chitosan extracted from shrimp shells by two methods. E-Polymers 10, 1–16 (2010). https://doi.org/10.1515/epoly.2010.10.1.748

    Article  Google Scholar 

  49. A.J. Hirsch, Functional properties of protein and chitin from commercial cricket flour (2018)

  50. B. Mohanty, D.M. Mulhivill, P.F. Fox, Emulsifying and foaming properties of acidic caseins and sodium caseinate. Food Chem. 28, 17–30 (1988)

    Article  CAS  Google Scholar 

  51. S.U. Pickering, Pickering: emulsions. J. Chem. Soc. Trans. 91, 2001–2021 (1907)

    Article  Google Scholar 

  52. F. Liu, C.H. Tang, Soy protein nanoparticle aggregates as pickering stabilizers for oil-in-water emulsions. J. Agric. Food Chem. 61, 8888–8898 (2013)

    Article  CAS  PubMed  Google Scholar 

  53. C. Harkin, N. Mehlmer, D.V. Woortman, T.B. Brück, W.M. Brück, Nutritional and additive uses of chitin and chitosan in the food industry (2019)

  54. H. Zhang, S. Yun, L. Song, Y. Zhang, Y. Zhao, The preparation and characterization of chitin and chitosan under large-scale submerged fermentation level using shrimp by-products as substrate. Int. J. Biol. Macromol. 96, 334–339 (2017). https://doi.org/10.1016/j.ijbiomac.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  55. J. Xu, L. Liu, J. Yu, Y. Zou, Z. Wang, Y. Fan, DDA (degree of deacetylation) and pH-dependent antibacterial properties of chitin nanofibers against Escherichia coli. Cellulose 26, 2279–2290 (2019). https://doi.org/10.1007/s10570-019-02287-2

    Article  CAS  Google Scholar 

  56. Y. Wu, T. Sasaki, S. Irie, K. Sakurai, A novel biomass-ionic liquid platform for the utilization of native chitin. Polymer (Guildf) 49, 2321–2327 (2008). https://doi.org/10.1016/j.polymer.2008.03.027

    Article  CAS  Google Scholar 

  57. F.B. Silva, L.J. Gasparrini, P.A. Cremonez, G.R.M. Burin, B. Machado, M.A. Polinarski, M.K. Arantes, H.J. Alves, Chitosan preparations with improved fat-binding capacity. J. Appl. Polym. Sci. 138, 1–15 (2021). https://doi.org/10.1002/app.50841

    Article  CAS  Google Scholar 

  58. J. Zhang, W.-R. Xu, Y.-C. Zhang, Facile production of chitin from shrimp shells using a deep eutectic solvent and acetic acid. R Soc. Chem. 12, 22631–22638 (2022). https://doi.org/10.1039/d2ra03417d

    Article  CAS  Google Scholar 

  59. X. Zhu, J. Cai, J. Yang, Q. Su, Determination of glucosamine in impure chitin samples by high-performance liquid chromatography. Carbohydr. Res. 340, 1732–1738 (2005). https://doi.org/10.1016/j.carres.2005.01.045

    Article  CAS  PubMed  Google Scholar 

  60. T. Hahn, A. Roth, R. Ji, E. Schmitt, S. Zibek, Chitosan production with larval exoskeletons derived from the insect protein production. J. Biotechnol. 310, 62–67 (2020). https://doi.org/10.1016/j.jbiotec.2019.12.015

    Article  CAS  PubMed  Google Scholar 

  61. A. Khayrova, S. Lopatin, V. Varlamov, Obtaining chitin/chitosan-melanin complexes from black soldier fly Hermetia illucens. IOP Conf. Ser. Mater. Sci. Eng. (2020). https://doi.org/10.1088/1757-899X/809/1/012020

    Article  Google Scholar 

  62. M. Psarianos, S. Ojha, R. Schneider, O.K. Schlüter, Chitin isolation and chitosan production from house crickets (Acheta domesticus) by environmentally friendly methods. Molecules (2022). https://doi.org/10.3390/molecules27155005

    Article  PubMed  PubMed Central  Google Scholar 

  63. M. Kaya, T. Baran, A. Mentes, M. Asaroglu, G. Sezen, K.O. Tozak, Extraction and characterization of α-chitin and chitosan from six different aquatic invertebrates. Food Biophys. 9, 145–157 (2014). https://doi.org/10.1007/s11483-013-9327-y

    Article  Google Scholar 

  64. J. Chakravarty, M.F. Rabbi, N. Bach, V. Chalivendra, C.L. Yang, C.J. Brigham, Fabrication of porous chitin membrane using ionic liquid and subsequent characterization and modelling studies. Carbohydr. Polym. 198, 443–451 (2018). https://doi.org/10.1016/j.carbpol.2018.06.101

    Article  CAS  PubMed  Google Scholar 

  65. J. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour. Technol. 160, 129–141 (2014). https://doi.org/10.1016/j.biortech.2013.12.110

    Article  CAS  PubMed  Google Scholar 

  66. N. Bhardwaj, S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325–347 (2010). https://doi.org/10.1016/j.biotechadv.2010.01.004

    Article  CAS  PubMed  Google Scholar 

  67. S. Hirano, Wet-spinning and applications of functional fibers based on chitin and chitosan. Macromol. Symp. 168, 21–30 (2001). https://doi.org/10.1002/1521-3900(200103)

    Article  CAS  Google Scholar 

  68. B. Sibaja, E. Culbertson, P. Marshall, R. Boy, R.M. Broughton, A.A. Solano, M. Esquivel, J. Parker, L.D. Ls Fuente, M.L. Auad, Preparation of alginate-chitosan fibers with potential biomedical applications. Carbohydr. Polym. 134, 598–608 (2015). https://doi.org/10.1016/j.carbpol.2015.07.076

    Article  CAS  PubMed  Google Scholar 

  69. A.M. Abdelgawad, S.M. Hudson, O.J. Rojas, Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178 (2014). https://doi.org/10.1016/j.carbpol.2012.12.043

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Evelyne Nkirote and Brenda Ruto for their contribution in sample preparation and data collection. We would also like to thank members of staff of the school of food and nutrition sciences of Jomo Kenyatta University of Agriculture and Technology for their support.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization; AN and JN. Methodology; All authors. Validation; All authors; Data collection; AN. Data curation; AN and JN. Formal analysis & drafting paper; AN. Review & Editing of the manuscript; All authors.

Corresponding author

Correspondence to Alex Ndiritu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ndiritu, A., Kinyuru, J., Onyango, A. et al. Functional and microstructural characteristics of chitin extracted from field cricket, house cricket, and black soldier fly cocoons. Food Measure 17, 5903–5912 (2023). https://doi.org/10.1007/s11694-023-02086-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-02086-1

Keywords

Navigation