Log in

Drying kinetics, extraction kinetics and microencapsulation of antioxidant bioactive compounds of pitaya (Hylocereus undatus) peel

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The prospects of commercialization in the market for exotic fruits are increasingly promising in Brazil. Pitaya, for instance, is a fruit that can be consumed either fresh or processed. During the processing of its pulp, there is generation of residues, mainly from the peel. The aim of this study was to evaluate the convective drying of pitaya peel and the extraction of bioactive compounds by cold maceration and ultrasound-assisted methods, as well as the microencapsulation (ME) process. The peels were cut and dried in an air circulation oven at 60 °C. Some empirical mathematical models were used to describe the drying process (Henderson & Pabis, Page, Peleg, Silva et al., Wang & Singh). The powders obtained from drying were subjected to ultrasound-assisted and cold maceration (4 °C) extractions and ME. Fresh peels (FR), extract obtained by ultrasound (US), extract obtained by cold maceration (CM) and microencapsulated extract (ME) were characterized for the Folin–Ciocalteu reducing capacity (FCRC), antioxidant capacity and phenolic compound profile by High-Performance Liquid Chromatography (HPLC). According to the results, the Peleg model showed the best description for the convective drying of pitaya peel at 60 °C. ME extract showed the highest values for antioxidant capacity by DPPH and FCRC. US and CM extracts showed significant results at 5% probability level for antioxidant capacity by ABTS and FRAP, respectively. The main group of phenolic compounds quantified was flavonols, among which quercetin 3-glucoside had the highest concentration (70.25–361.45 g 100 g−1), and high levels were quantified for the betalains betanin and isobetanin, between 167.23 and 326.43 g 100 g−1. The ME sample had the highest content of total phenolics quantified (TPQ) (1017.18 g 100 g−1), highlighting its technological potential for food production.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P.S.M. FróesJunior, N.R.P. Cardoso, F.K. Rebello, A.K.O. Homma, M.L.B. Lopes, Aspectos da produção, comercialização e desenvolvimento da cultura da pitaya no estado do Pará. Enciclopédia Biosfera 16(29), 264–265 (2019). https://doi.org/10.18677/EnciBio_2019A19

    Article  Google Scholar 

  2. B. Mahayothee, N. Komonsing, P. Khuwijitjaru, M. Nagle, J. Müller, Influence of drying conditions on colour, betacyanin content and antioxidant capacities in dried red-fleshed dragon fruit (Hylocereus polyrhizus). Int. J. Food Sci. Technol. 54(2), 460–470 (2018). https://doi.org/10.1111/ijfs.13958

    Article  CAS  Google Scholar 

  3. ŞH. Attar, M.A. Gündeşli, I. Urün, S. Kafkas, N.E. Kafkas, S. Ercisli, C. Ge, J. Mlcek, A. Adamkova, nutritional analysis of red-purple and white-fleshed pitaya (Hylocereus) species. Molecules 27(3), 808 (2022). https://doi.org/10.3390/molecules27030808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. M. Utpott, R. Ramos de Araujo, C. Galarza Vargas, A.R. Nunes Paiva, B. Tischer, A. de Oliveira Rios, S. Hickmann Flôres, Characterization and application of red pitaya (Hylocereus polyrhizus) peel powder as a fat replacer in ice cream. J. Food Process. Preserv. (2020). https://doi.org/10.1111/jfpp.14420

    Article  Google Scholar 

  5. K. Kumar, S. Srivastav, V.S. Sharanagat, Ultrasound assisted extraction (UAE) of bioactive compounds from fruit and vegetable processing by-products: A review. Ultrasonics Sonochemistry 70, 105325 (2021). https://doi.org/10.1016/j.ultsonch.2020.105325

    Article  CAS  PubMed  Google Scholar 

  6. G.V.S. Bhagya Raj, K.K. Dash, Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: optimization, kinetics and thermodynamic studies. Ultrasonics Sonochemistry 68, 105180 (2020). https://doi.org/10.1016/j.ultsonch.2020.105180

    Article  CAS  PubMed  Google Scholar 

  7. C. Henríquez, A. Córdova, S. Almonacid, J. Saavendra, Kinetic modeling of phenolic compounds degradation during drum-drying of apple peel by products. J. Food Eng. 143, 146–153 (2014). https://doi.org/10.1016/j.jfoodeng.2014.06.037

    Article  CAS  Google Scholar 

  8. V. Marcillo-Parra, D.S. Tupuna-Yerovi, Z. González, J. Ruales, Encapsulation of bioactive compounds from fruit and vegetable by-products for food application—a review. Trends Food Sci. Technol. 116, 11–23 (2021). https://doi.org/10.1016/j.tifs.2021.07.009

    Article  CAS  Google Scholar 

  9. V. Nedovic, A. Kalusevic, V. Manojlovic, S. Levic, B. Bugarski, An overview of encapsulation technologies for food applications. Procedia Food Sci. 1, 1806–1815 (2011). https://doi.org/10.1016/j.profoo.2011.09.265

    Article  CAS  Google Scholar 

  10. Z. Gu, C. Deming, H. Yongbin, C. Zhigang, G. Feirong, Optimization of carotenoids extraction from Rhodobacter sphaeroides. LWT Food Sci. Technol. 41(6), 1082–1088 (2008). https://doi.org/10.1016/j.lwt.2007.07.005

    Article  CAS  Google Scholar 

  11. N.M. Sachindra, N. Bhaskar, N.S. Mahendrakar, Recovery of carotenoids from shrimp waste in organic solvents. Waste Manage. 26(10), 1092–1098 (2006). https://doi.org/10.1016/j.wasman.2005.07.002

    Article  CAS  Google Scholar 

  12. V.L. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Article  CAS  Google Scholar 

  13. C.V.S. Padilha, G.A. Miskinis, M.E.A.O. De Souza, G.E. Pereira, D. Oliveira, M.T. Bordignon-Luiz, M.D.S. Lima, Rapid determination of flavonoids and phenolic acids in grape juices and wines by RP-HPLC/DAD: Method validation and characterization of commercial products of the new Brazilian varieties of grape. Food Chem. 228, 106–115 (2017). https://doi.org/10.1016/j.foodchem.2017.01.137

    Article  CAS  PubMed  Google Scholar 

  14. M.C.P. Dutra, L.L. Rodrigues, D. Oliveira, G.E. Pereira, M. Dos Santos Lima, Integrated analyses of phenolic compounds and minerals of Brazilian organic and conventional grape juices and wines: Validation of a method for determination of Cu, Fe and Mn. Food Chem. 269, 157–165 (2018)

    Article  CAS  PubMed  Google Scholar 

  15. M.D.S.M. Rufino, R.E. Alves, E.S. de Brito, S.M. de Morais, C.D.G. Sampaio, J. Pérez-Jiménez, F.D. Saura-colixto, Metodologia científica: Determinação da atividade antioxidante total em frutas pelo método de redução do ferro (FRAP). Comunicado Técnico Embrapa 125, 1–4 (2006)

    Google Scholar 

  16. R.L.J. Almeida, N.C. Santos, V.M.A. Silva, V.H.A. Ribeiro, E.R. Barros, J.A. Cavalcante, A.P.R. Queiroga, M.R. Luíz, A.R.B. Nascimento, J.S. Nunes, Influence of thickness on the drying kinetics of beet slices. Res. Soc. Dev. 9(4), e18942940 (2020). https://doi.org/10.33448/rsd-v9i3.2940

    Article  Google Scholar 

  17. E.C.O. Silva, W.P. Silva, J.P. Gomes, C.M.D.P.S. Silva, H.V. Alexandre, V.S.O. Farias et al., Drying of albedo and whole peel of yellow passion fruit. J. Agric. Sci. 11(6), 501–509 (2019). https://doi.org/10.5539/jas.v11n6p501

    Article  Google Scholar 

  18. A.R.N. Lima, Ê.M.A. dos Santos, M.T.L. Pereira, A.F. da Silva Júnior, T.M.Q. de Oliveira, V.S.O. Farias, C.M. Franco, J.S.P. de Ataíde, Otimização e simulação do processo de secagem de cascas de maracujá através de ferramentas empíricas e analíticas. Braz. J. Dev. 6(10), 74271–74285 (2020). https://doi.org/10.34117/bjdv6n10-015

    Article  Google Scholar 

  19. R.A. de Medeiros, V.S.O. Farias, T.M.Q. de Oliveira, A.F. da Silva Júnior, A.R.N. Lima, M.T.L. Pereira, C.M.R. Franco, J.S.P. de Ataíde, Comportamento da secagem de sementes de melão (Cucumis melo L.) em camada fina usando modelos empíricos. Braz. J. Dev. 6(8), 64001–64009 (2020). https://doi.org/10.34117/bjdv6n8-725

    Article  Google Scholar 

  20. N.C. Santos, R.L.J. Almeida, T.S. Pereira, A.P.R. de Queiroga, V.M.A. Silva, do Amaral, D. S., Almeida, R. D., Ribeiro, V. H. A., Barros, E. R., & da Silva, L. R. I., Mathematical modeling applied to the drying kinetics of pitomba bark (Talisia esculenta). Res. Soc. Dev. 9(2), e46921986 (2020). https://doi.org/10.33448/rsd-v9i2.1986

    Article  Google Scholar 

  21. D.C. Santos, D.D.F. Leite, J.F. Lisbôa, J.P.L. Ferreira, F.S. dos Santos, T.L.B. de Lima, R.M.F. de Figueiredo, T.N. da Costa, Modelagem e propriedades termodinâmicas da secagem de fatias de acuri. Braz. J. Food Technol. 22, e2018031 (2019). https://doi.org/10.1590/1981-6723.03118

    Article  CAS  Google Scholar 

  22. A.J.B. De Brito Araújo, W.P. Silva, I.S. Moreira, N.C. Santos, Effect of drying temperature on the physicochemical characteristics, bioactive compounds, and antioxidant activity of “Palmer” mango peels. J. Food Process Eng. 44(11), e13860 (2021). https://doi.org/10.1111/jfpe.13860

    Article  CAS  Google Scholar 

  23. L.S. Souza, N.M. Albuquerque-Junior, D.A. Lima, T.A. Amorim, A.B.M. da Silva, S.B.O. Vilar, C.S.G.R. Pacheco, A.J.B. Araújo, Aproveitamento do resíduo agroindustrial de abacaxi submetido ao processo de secagem para elaboração de barra de cereais. Res. Soc. Dev. 10(14), e33101421713 (2021). https://doi.org/10.33448/rsdv10i14.2171

    Article  Google Scholar 

  24. A.P.M. de Sousa, A.R.N. Campos, J.P. Gomes, J.D. Costa, A.D.B. de Macedo, R.A.C. de Santana, Cinética de secagem de resíduos de jaca (Artocarpus heterophyllus Lam.). Res. Soc. Dev. 10(2), e31510212610 (2021). https://doi.org/10.33448/rsd-v10i2.12610

    Article  Google Scholar 

  25. B.F. Feitosa, E.N.A. de Oliveira, J.O. de Oliveira Neto, D.B. de Oliveira, R.M. Feitosa, Cinética de secagem dos resíduos da agroindústria processadora de polpa de frutas. Energ. Agric. 34(1), 134–141 (2019). https://doi.org/10.17224/EnergAgric.2019v34n01p134-141

    Article  Google Scholar 

  26. J. Ahmed, Drying of vegetables: principles and dryer design, in Handbook of Vegetables and Vegetable Processing. ed. by N.KEd. Sinha (Blackwell, Hoboken, 2011), pp.279–298

    Chapter  Google Scholar 

  27. K.J.B. Park, K.J. Park, L.F.T. Alonso, F.E.P. Cornejo, I.M.D. Fabbro, Secagem: fundamentos e equações. Rev. Bras. Prod. Agroind. Campina Grande 16(1), 93–127 (2014). https://doi.org/10.15871/1517-8595/rbpa.v16n1p93-127

    Article  Google Scholar 

  28. F.P. Martins, J.C. Bosch Neto, A.J.O. Silva, A.M.O. Siqueira, Secagem: uma revisão. J. Eng. Exact Sci. 6(4), 600–607 (2020). https://doi.org/10.18540/jcecvl6iss4pp0600-0607

    Article  Google Scholar 

  29. W. Setyaningsih, I.E. Saputro, C.A. Carrera, M. Palma, Optimisation of an ultrasound-assisted extraction method for the simultaneous determination of phenolics in rice grains. Food Chem. 288, 221–227 (2019). https://doi.org/10.1016/j.foodchem.2019.02.107

    Article  CAS  PubMed  Google Scholar 

  30. D. Pradal, P. Vauchel, S. Decossin, P. Dhulster, K. Dimitrov, Kinetics of ultrasound-assisted extraction of antioxidant polyphenols from food by-products: extraction and energy consumption optimization. Ultrason. Sonochem. 32, 137–146 (2016). https://doi.org/10.1016/j.ultsonch.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  31. J.C. Mota, P.P. Almeida, M.Q. Freitas, M.B. Stockler-Pinto, J.T. Guimarães, Far from being a simple question: the complexity between in vitro and in vivo responses from nutrients and bioactive compounds with antioxidant potential. Food Chem. 402, 134351 (2022). https://doi.org/10.1016/j.foodchem.2022.134351

    Article  CAS  PubMed  Google Scholar 

  32. A.M. Som, N. Ahmat, H.A.A. Hamid, N. Azizuddin, A comparative study on foliage and peels of Hylocereus undatus (white dragon fruit) regarding their antioxidant activity and phenolic content. Heliyon 5(2), 01244 (2019). https://doi.org/10.1016/j.heliyon.2019.e01244

    Article  Google Scholar 

  33. W. Tang, W. Li, Y. Yang, X. Lin, L. Wang, C. Li, R. Yang, Phenolic compounds profile and antioxidant capacity of pitahaya fruit peel from two red-skinned species (Hylocereus polyrhizus and Hylocereus undatus). Foods 10(6), 1183 (2021). https://doi.org/10.3390/foods10061183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. H.A.R. Suleria, C.J. Barrow, F.R. Dunshea, Screening and characterization of phenolic compounds and their antioxidant capacity in different fruit peels. Foods 9(9), 1206 (2020). https://doi.org/10.3390/foods9091206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. N. Uslu, M.M. Özcan, The effect of ultrasound-vacuum-assisted extraction on bioactive properties of pitaya (Hylocereus undatus). Int. J. Food Sci. Technol. 56, 6618–6625 (2021). https://doi.org/10.1111/ijfs.15364

    Article  CAS  Google Scholar 

  36. N. Benbouguerra, R. Hornedo-Ortega, F. Garcia, T. El Khawand, C. Saucier, T. Richard, Stilbenes in grape berries and wine and their potential role as anti-obesity agents: a review. Trends Food Sci. Technol. 112, 362–381 (2021). https://doi.org/10.1016/j.tifs.2021.03.060

    Article  CAS  Google Scholar 

  37. T.B. Santos, F.P. de Araujo, A.F. Neto, S.T. de Freitas, J. de Souza-Araújo, S.B. de Oliveira-Vilar, et al., Phytochemical compounds and antioxidant activity of the pulp of two Brazilian passion fruit species: Passiflora cincinnata Mast. and Passiflora edulis Sims. Int. J. Fruit Sci. 21(1), 255–269 (2021). https://doi.org/10.1080/15538362.2021.1872050

  38. A. Solovchenko, E.M. Yahia, C. Chen, Pigments, in Postharvest Physiology and Biochemistry of Fruits and Vegetables (Elsevier, Amsterdam, 2019), pp. 225–252. https://doi.org/10.1016/b978-0-12-813278-4.00011-7

  39. C. Saenjum, T. Pattananandecha, K. Nakagawa, Antioxidative and anti-inflammatory phytochemicals and related stable paramagnetic species in different parts of dragon fruit. Molecules 26(12), 3565 (2021). https://doi.org/10.3390/molecules26123565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. C.L. Roriz, S.A. Heleno, M.J. Alves, M.B.P.P. Oliveira, J. Pinela, M.I. Dias, R.C. Calhelha, P. Morales, I.C.F.R. Ferreira, L. Barros, Red pitaya (Hylocereus costaricensis) peel as a source of valuable molecules: extraction optimization to recover natural colouring agents. Food Chem. 372, 131344 (2022). https://doi.org/10.1016/j.foodchem.2021.131344

    Article  CAS  PubMed  Google Scholar 

  41. F. Fathordoobady, M. Jarzębski, A.P. Singh, Y. Guo, Y.A. Manap, Encapsulation of betacyanins from the peel of red dragon fruit (Hylocereus polyrhizus L.) in alginate microbeads. Food Hydrocolloids (2020). https://doi.org/10.1016/j.foodhyd.2020.106535

    Article  Google Scholar 

  42. M.O. Holanda, S.M. Lira, J.Y.G. da Silva, C.G. Marques, L.C. Coelho, C.L.S. Lima et al., Intake of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) beneficially affects the cholesterolemic profile of dyslipidemic C57BL/6 mice. Food Biosci. 42, 101181 (2021). https://doi.org/10.1016/j.fbio.2021.101181

    Article  CAS  Google Scholar 

  43. S.M. Henderson, S. Pabis, Grain drying theory I. Temperature effects on drying coefficient. J. Agric. Eng. Res 6, 169–174 (1961)

    Google Scholar 

  44. G.E. Page, Factors influencing the maximum of air drying shelled corn in thin layer. Thesis Dissertation (M.Sc.) – Purdue University, Indiana (1949)

  45. M. Peleg, An empirical model for the description of moisture sorption curves. J. Food Sci. 53, 1216–1217 (1988)

    Article  Google Scholar 

  46. W.P. Silva, C. M. e Silva, F.J. Gama, J.P. Gomes, Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas. J. Saudi Soc. Agric. Sci. 13(1), 67–74 (2014)

    Google Scholar 

  47. C.Y. Wang, R.P. Singh, Use of variable equilibrium moisture content in modeling rice drying. ASAE Paper, 78-6505, ASAE, St. Joseph, MI (1978)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Júlia de Brito Araújo Carvalho.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, T.A., dos Santos Lima, M., de Souza, M.E.A.O. et al. Drying kinetics, extraction kinetics and microencapsulation of antioxidant bioactive compounds of pitaya (Hylocereus undatus) peel. Food Measure 17, 4073–4085 (2023). https://doi.org/10.1007/s11694-023-01928-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-023-01928-2

Keywords

Navigation