Log in

In vitro bioaccessibility of minerals in fortified infant foods and correlation between mineral absorption facilitators and inhibitors

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The aim of this work was evaluate the in vitro bioaccessibility of iron (Fe), manganese (Mn) and zinc (Zn) in lactea cereal flour, infant cereal, milk powder, and chocolate powder and assessed the correlation between mineral absorption facilitators and inhibitors. The total mineral concentration and in vitro bioaccessibility were quantified by flame atomic absorption spectrometry. In vitro bioaccessibility assays were performed using three sequential steps to simulate salivary, gastric and intestinal digestion. The mineral absorption facilitators and inhibitors determined were total dietary fiber, phytic acid, ascorbic acid, and calcium contents. The total mineral content analysis showed that Fe was present in the highest concentration, whereas Zn had the highest bioaccessible content in the evaluated samples. Correlation data showed that phytates, Ca, and Fe can inhibit mineral absorption, whereas ascorbic acid may enhance absorption. Thus, the proper choice of the fortifying agent and study of the food matrix are key to increasing micronutrient bioaccessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Zand, F.B. Zotor, B. Chowdhry, J. Tetteh, D. Wray, P. Amuna, Determination of mineral content of commercial infant foods in the United Kingdom. Proc. Nutr. Soc. 69, OCE6 (2010)

    Article  Google Scholar 

  2. World Health Organization, 2016. Global strategy for infant and young child feeding. https://www.who.int/nutrition/publications/infantfeeding/9241562218/en/ Accessed 06 June 2021.

  3. P.R. Pehrsson, K.Y. Patterson, M.A. Khan, Selected vitamins, minerals and fatty acids in infant formulas in the United States. J. Food Compos. Anal. 36, 66–71 (2014). https://doi.org/10.1016/j.jfca.2014.06.004

    Article  CAS  Google Scholar 

  4. S. Bulusu, A.S. Wesley, Public Health Nutrition in Develo** Countries, 1st Ed. Addressing Micronutrient Malnutrition Through Food Fortification (Woodhead Publishing, Delhi, India, 2011)

    Google Scholar 

  5. C. Liyanage, M. Hettiarachchi, Food fortification. Ceylon Med. J. 56, 124–127 (2011). https://doi.org/10.4038/cmj.v56i3.3607

    Article  CAS  PubMed  Google Scholar 

  6. Food and Agriculture Organization. Annex, 4. Micronutrient Fortification of Food: Technology and Quality Control. FAO Technical Consultation on Food Fortification: Technology and Quality Control. Rome, Italy, 1995. http://www.fao.org/3/w2840E/w2840e00.htm. Accessed 25 April 2021.

  7. S. Damodaran, K. Parkin, Fennema’s Food Chemistry (Artmed, Porto Alegre, 2010)

    Google Scholar 

  8. N. Abbaspour, R. Hurrell, R. Kelishadi, Review on iron and its importance for human health. J Res Med Sci 19(2), 164–174 (2014)

    PubMed  PubMed Central  Google Scholar 

  9. C.T. Chasapis, P.A. Ntoupa, C.A. Spiliopoulou, M.E. Stefanidou, Recent aspects of the effects of zinc on human health. Arch Toxicol 94(5), 1443–1460 (2020). https://doi.org/10.1007/s00204-020-02702-9

    Article  CAS  PubMed  Google Scholar 

  10. D.S. Avila, R.L. Puntel, M. Aschner, Manganese in health and disease, in Interrelations between Essential Metal Ions and Human Diseases. Metal Ions in Life Sciences, vol. 13, ed. by A. Sigel, H. Sigel, R. Sigel (Springer, Dordrecht, 2013)

    Google Scholar 

  11. T.O. Gonçalves, G.S. Filbido, A.P.O. Pinheiro, P.D.P. Piereti, R.D. Villa, A.P. Oliveira, In vitro bioaccessibility of the Cu, Fe, Mn and Zn in the baru almond and bocaiúva pulp and macronutrients characterization. J Food Compos Anal 86, 103356 (2020). https://doi.org/10.1016/j.jfca.2019.103356

    Article  CAS  Google Scholar 

  12. M. Minekus, M. Alminger, P. Alvito, S. Ballance, T. Bohn, C. Bourlieu, F. Carriere, R. Boutrou, M. Corredig, D. Dupont, C. Dufour, L. Egger, M. Golding, S. Karakaya, B. Kirkhus, S. Le Feunteun, U. Lesmes, A. Macierzanka, A. Mackie, S. Marze, D. Mcclements, O. Ménard, I. Recio, C.N. Santos, R.P. Singh, G.E. Vegarud, M.S. Wickham, W. Weitschies, A. Brodkorb, A standardised static in vitro digestion method suitable for food—an international consensus. Food Funct. 5, 1113–1124 (2014). https://doi.org/10.1039/c3fo60702j

    Article  CAS  PubMed  Google Scholar 

  13. E.N. Silva, L.O. Farinas, S. Cadore, The total concentration and bioaccessible fraction of nutrients in purées, instant cereals and infant formulas by ICP OES: a study of dietary recommended intakes and the importance of using a standardized in vitro digestion method. J Food Compos Anal 68, 65–72 (2018). https://doi.org/10.1016/j.jfca.2017.06.007

    Article  CAS  Google Scholar 

  14. S.M.F. Cozzolino, Nutrient Biodisponibility (Manole, Barueri, 2012)

    Google Scholar 

  15. S.J. Hur, B.O. Lim, E.A. Decker, D.J. McClements, In vitro human digestion models for food applications. Food Chem 125, 1–12 (2011). https://doi.org/10.1016/j.foodchem.2010.08.036

    Article  CAS  Google Scholar 

  16. E.N. Silva, A.B.P. Leme, M. Cidade, S. Cadore, Evaluation of the bioaccessible fractions of Fe, Zn, Cu and Mn in baby foods. Talanta 117, 184–188 (2013). https://doi.org/10.1016/j.talanta.2013.09.008

    Article  CAS  Google Scholar 

  17. M.I.A. Fioravanti, R.F. Milani, E.L. Paiva, M.A. Morgano, Influence of various ingredients on mineral bioaccessibility in infant formula and whole milk. Int Dairy J 110, 104808 (2020). https://doi.org/10.1016/j.idairyj.2020.104808

    Article  CAS  Google Scholar 

  18. E.L. Paiva, C. Medeiros, R.F. Milani, M.A. Morgano, J.A.L. Pallone, A.P. Arisseto-Bragotto, Aluminum content and effect of in vitro digestion on bioaccessible fraction in cereal-based baby foods. Food Res Int 131, 108965 (2020). https://doi.org/10.1016/j.foodres.2019.108965

    Article  CAS  PubMed  Google Scholar 

  19. H. Uğurab, J. Çatak, O.F. Mızrak, N. Çebi, M. Yaman, Determination and evaluation of in vitro bioaccessibility of added vitamin C in commercially available fruit-, vegetable-, and cereal-based baby foods. Food Chem 330, 127166 (2020). https://doi.org/10.1016/j.foodchem.2020.127166

    Article  CAS  Google Scholar 

  20. S.N. Akça, H.S. Sargın, O.F. Mızrak, M. Yaman, Determination and assessment of the bioaccessibility of vitamins B1, B2, and B3 in commercially available cereal-based baby foods. Microchem J 150, 104192 (2019). https://doi.org/10.1016/j.microc.2019.104192

    Article  CAS  Google Scholar 

  21. Adolfo Lutz Institute (IAL), Normas analíticas do Instituto Adolfo Lutz: Métodos Físico-químicos para análise de alimentos Agência de Vigilância Sanitária. Ministério da Saúde, São Paulo, BR (2008)

  22. AOAC, Official Methods of Analysis of the Association of Official Analytical Chemists, 19th edn. AOAC, Arlington (2012)

  23. R. García-Villanova, R.J. García-Villanova, C.R. De Lope, Determination of phytic acid by complexometric titration of excess of iron (III). Analyst 107, 1503–1506 (1982). https://doi.org/10.1039/an9820701503

    Article  Google Scholar 

  24. N. Baccan, J.C. Andrade, O.E.S. Godinho, J.S. Barone, Elementar Quantitative Analytical Chemistry (Edgard Blucher, São Paulo, 2001)

    Google Scholar 

  25. L.A. Currie, Detection and quantification limits: origins and historical overview. Anal Chim Acta 391, 127–134 (1999). https://doi.org/10.1016/S0003-2670(99)00105-1

    Article  CAS  Google Scholar 

  26. Association of Official Analytical Chemists (AOAC) (2002) Guidelines for single laboratory validation of chemical Methods for dietary supplements and botanicals. https://members.aoac.org/AOAC_Docs/StandardsDevelopment/SLV_Guidelines_Dietary_Supplements.pdf. Accessed 07 June 2021.

  27. M. Kumari, K. Platel, Bioaccessibility of trace elements and chromium speciation in commonly consumed cereals and pulses. Int. J. Food Prop. 20, 1612–1620 (2017). https://doi.org/10.1080/10942912.2016.1215996

    Article  CAS  Google Scholar 

  28. J.N. Miller, J.C. Miller, Statistics and Chemometrics for Analytical Chemistry (Pearson, London, 2010)

    Google Scholar 

  29. D.K. Quintaes, R. Barberá, A. Cilla, Iron Bioavailability in iron-fortified cereal foods: The contribution of in vitro studies. Crit Rev Food Sci Nutr. 57, 2028–2041 (2017). https://doi.org/10.1080/10408398.2013.866543

    Article  CAS  Google Scholar 

  30. World Health Organization (2006) Guidelines on food fortification with micronutrients WHO, Geneva. https://www.who.int/publications/i/item/9241594012. Accessed 08 June 2021.

  31. S.M.T. Gharibzahedi, S.M. Jafari, The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation. Trends Food Sci. Technol. 62, 119–132 (2017). https://doi.org/10.1016/j.tifs.2017.02.017

    Article  CAS  Google Scholar 

  32. J.H. Freeland-Graves, T.Y. Mousa, S. Kim, International variability in diet and requirements of manganese: Causes and consequences. J. Trace Elem. Med. Biol. 38, 24–32 (2016). https://doi.org/10.1016/j.jtemb.2016.05.004

    Article  CAS  PubMed  Google Scholar 

  33. Brazilian Food Composition Table (TBCA), Universidade de São Paulo (USP). Food Research Centes (FoRC). Versão 7.1. São Paulo, Brasil, 2020. http://www.fcf.usp.br/tbca.. Accessed 08 June 2021.

  34. K. Baye, J.P. Guyot, C. Mouquet-Rivier, The unresolved role of dietary fibers on mineral absorption. Crit Rev Food Sci Nutr 57(5), 949–957 (2017). https://doi.org/10.1080/10408398.2014.953030

    Article  CAS  PubMed  Google Scholar 

  35. A.G. Asuero, A. Sayago, A.G. González, The correlation coefficient: An overview. Crit. Rev. Anal. Chem. 36, 41–59 (2006). https://doi.org/10.1080/10408340500526766

    Article  CAS  Google Scholar 

  36. S. Rousseau, C. Kyomugasho, M. Celus, M. Hendrickx, T. Grauwet, Barriers impairing mineral bioaccessibility and bioavailability in plant-based foods and the perspectives for food processing. Crit Rev Food Sci Nutr 60, 826–843 (2019). https://doi.org/10.1080/10408398.2018.155224

    Article  PubMed  Google Scholar 

  37. M. Gabaza, H. Shumoy, M. Muchuweti, P. Vandamme, K. Raes, Enzymatic degradation of mineral binders in cereals: Impact on iron and zinc bioaccessibility. J. Cereal Sci. 82, 223–229 (2018). https://doi.org/10.1016/j.jcs.2018.06.007

    Article  CAS  Google Scholar 

  38. S.L. Panda, A. Jaiswal, A.J. Lakshmi, Compositional and processing effects in promoting the bioaccessibility of iron and zinc of ready to cook high protein kheer mix. LWT 109, 186–193 (2019). https://doi.org/10.1016/j.lwt.2019.04.026

    Article  CAS  Google Scholar 

  39. R. Blanco-Rojo, M.P. Vaquero, Iron bioavailability from food fortification to precision nutrition. A review. Innov. Food Sci. Emerg. Technol. 51, 126–138 (2019). https://doi.org/10.1016/j.ifset.2018.04.015

    Article  CAS  Google Scholar 

  40. C.C. Pereira, E.N. Silva, A.O. de Souza, M.A. Vieira, A.S. Ribeiro, S. Cadore, Evaluation of the bioaccessibility of minerals from blackberries, raspberries, blueberries and strawberries. J. Food Compos. Anal. 68, 73–78 (2018). https://doi.org/10.1016/j.jfca.2016.12.001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the IFMT for promoting supporting this study (Edict 04/2018 PROPES/IFMT for support and promotion to postgraduate and Edict 32/2019 PROPES/IFMT for publication of scientific articles); the Brazilian Coordination for the Improvement of Higher Education Personnel (CAPES) for granting a scholarship to G.S.F.; and the Análise de Contaminantes Inorgânicos Laboratory of the Chemistry Department of UFMT.

Author information

Authors and Affiliations

Authors

Contributions

Experimental Design: APO, RDV; Sampling: GSF; Analytical determinations: GSF, BAF, IMPN, APOP, DCS, RDV, APO; Statistical analysis and data interpretation: EN, GSF; Preparation and revision of the draft: APO, RDV, GSF.

Corresponding author

Correspondence to Adriana Paiva de Oliveira.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filbido, G.S., Narita, I.M.P., de Oliveira Pinheiro, A.P. et al. In vitro bioaccessibility of minerals in fortified infant foods and correlation between mineral absorption facilitators and inhibitors. Food Measure 15, 5648–5656 (2021). https://doi.org/10.1007/s11694-021-01137-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-021-01137-9

Keywords

Navigation