Log in

Silver-Decorated Reduced Graphene Oxide–Sulfonated Polyaniline Ternary Nanocomposite: A Highly Reliable Anti-Corrosion Coating Material for Mild Steel

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work demonstrates the as-prepared silver (Ag)-decorated reduced graphene oxide (rGO) nanohybrid–sulfonated polyaniline (SPANI) as a highly efficient anti-corrosion coating material for mild steel (MS) corrosion. In this direction, graphene oxide (GO), rGO-Ag and rGO-Ag-SPANI were synthesized and characterized by Fourier transform infrared (FT-IR), x-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectral studies. Different weight ratios of rGO-Ag and SPANI were dispersed in epoxy (EP) resin and coated on the MS surface by spin coating technique. The coated nanocomposites were examined by SEM, atomic force microscopy (AFM) and contact angle analyses. Electrochemical corrosion measurements of different compositions rGO-Ag and SPANI were carried out to analyze the influence of rGO-Ag-SPANI nanofiller in enhancing the anti-corrosion and barrier properties of EP resin. Results indicate that 1:2 composition of rGO-Ag and SPANI-dispersed epoxy coating (GASP-3) showed good corrosion protection against the corrosive electrolyte, and the value of |Z|0.01 Hz was found to be in the order of 106 Ω cm2. Further, the highest contact angle value of 93.4° in GASP-3 coating substantiates the electrochemical results. This could be ascribed due to the presence of more SPANI molecules in the coating matrix which effectively block the passage of corrosive electrolytes through the micropores of epoxy resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Reference

  1. C.X. Wang and X.F. Zhang, A Non-particle and Fluorine-Free Superhydrophobic Surface Based on One-Step Electrodeposition of Dodecyltrimethoxysilane on Mild Steel for Corrosion Protection, Corros. Sci., 2019, 163, 108284. https://doi.org/10.1016/j.corsci.2019.108284

    Article  CAS  Google Scholar 

  2. A. Dehghani, F. Poshtiban, and G. Bahlakeh, Fabrication of Metal-Organic Based Complex Film Based on Three-Valent Samarium Ions-[bis (phosphonomethyl) amino] Methylphosphonic Acid (ATMP) for Effective Corrosion Inhibition of Mild Steel in Simulated Seawater, Constr. Build. Mater., 2020, 239, p 17812. https://doi.org/10.1016/j.conbuildmat.2019.117812

    Article  CAS  Google Scholar 

  3. A.A.M.M. Singh, P.A. Franco, and J.S. Binoj, Enhancement of Corrosion Resistance on Plasma Spray Coated Mild Steel Substrate Exposed to Marine Environment, Mater. Today, 2019, 15, p 84–89. https://doi.org/10.1016/j.matpr.2019.05.028

    Article  CAS  Google Scholar 

  4. S. Karthick, S. Muralidharan, and V. Saraswathy, Corrosion Performance of Mild Steel and Galvanized Iron in Clay Soil Environment, Arab. J. Chem., 2020, 13(1), p 3301–3318. https://doi.org/10.1016/j.arabjc.2018.11.005

    Article  CAS  Google Scholar 

  5. M.G. Sari, B. Ramezanzadeh, M. Shahbazi, and A.S. Pakdel, Influence of Nanoclay Particles Modification by Polyester-Amide Hyperbranched Polymer on the Corrosion Protective Performance of the Epoxy Nanocomposite, Corros. Sci., 2015, 92, p 162–172. https://doi.org/10.1016/j.corsci.2014.11.047

    Article  CAS  Google Scholar 

  6. K. Patel, R. Singh, and H.W. Kim, Carbon Based-Nanomaterials as an Emerging Platform for Theranostics, Mater. Horiz., 2018, 6, p 434–469. https://doi.org/10.1039/c8mh00966j

    Article  CAS  Google Scholar 

  7. R. Rauti, M. Musto, S. Bosi, M. Prato, and L. Ballerini, Properties and Behavior of Carbon Nanomaterials When Interfacing Neuronal Cells: How Far Have We Come?, Carbon, 2018 https://doi.org/10.1016/j.carbon.2018.11.026

    Article  Google Scholar 

  8. I. Khan, K. Saeed, and I. Khan, Nanoparticles: Properties, Applications and Toxicities, Arab. J. Chem., 2017, 12(7), p 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

    Article  CAS  Google Scholar 

  9. G. Cui, Z. Bi, R. Zhang, J. Liu, and XYu.Z. Li, A Comprehensive Review on Graphene-Based Anti-Corrosive Coatings, Chem. Eng. J., 2019, 2019(373), p 104–121. https://doi.org/10.1016/j.cej.2019.05.034

    Article  CAS  Google Scholar 

  10. A.A. Olajire, Recent Advances on Organic Coating System Technologies for Corrosion Protection of Offshore Metallic Structures, J. Mol. Liq., 2018, 269, p 572–606. https://doi.org/10.1016/j.molliq.2018.08.053

    Article  CAS  Google Scholar 

  11. Y. Ahmadi and S. Ahmad, Surface-Active Antimicrobial and Anticorrosive Oleo-Polyurethane/Graphene Oxide Nanocomposite Coatings: Synergistic Effects of In-Situ Polymerization and π-π Interaction, Prog. Org. Coat., 2019, 127, p 168–180. https://doi.org/10.1016/j.porgcoat.2018.11.019

    Article  CAS  Google Scholar 

  12. S. Amrollahi, B. Ramezanzadeh, H. Yari, M. Ramezanzadeh, and M. Mahdavian, Synthesis of Polyaniline-Modified Graphene Oxide for Obtaining a High Performance Epoxy Nanocomposite Film with Excellent UV Blocking/Anti-Oxidant/Anti-Corrosion Capabilities, Compos. Part B-Eng., 2019, 173, 106804. https://doi.org/10.1016/j.compositesb.2019.05.015

    Article  CAS  Google Scholar 

  13. Q. Zhu, E. Li, X. Liu, W. Song, Y. Li, X. Wang, and C. Liu, Epoxy Coating with in-Situ Synthesis of Polypyrrole Functionalized Graphene Oxide for Enhanced Anticorrosive Performance, Prog. Org. Coat., 2020, 140, 105488. https://doi.org/10.1016/j.porgcoat.2019.105488

    Article  CAS  Google Scholar 

  14. A.A. Javidparvar, R. Naderi, and B. Ramezanzadeh, Epoxy-Polyamide Nanocomposite Coating with Graphene Oxide as Cerium Nanocontainer Generating Effective Dual Active/Barrier Corrosion Protection, Compos. Part B-Eng., 2019, 172, p 363–375. https://doi.org/10.1016/j.compositesb.2019.05.055

    Article  CAS  Google Scholar 

  15. M. Ramezanzadeh, B. Ramezanzadeh, M.G. Sari, and M.R. Saeb, Corrosion Resistance of Epoxy Coating on Mild Steel Through Polyamidoamine Dendrimer-Covalently Functionalized Graphene Oxide Nanosheets, J. Ind. Eng. Chem., 2019, 82, p 290–302. https://doi.org/10.1016/j.jiec.2019.10.025

    Article  CAS  Google Scholar 

  16. M.G. Sari and B. Ramezanzadeh, Epoxy Composite Coating Corrosion Protection Properties Reinforcement Through the Addition of Hydroxyl-Terminated Hyperbranched Polyamide Non-Covalently Assembled Graphene Oxide Platforms, Constr. Build. Mater., 2020, 234, 117421. https://doi.org/10.1016/j.conbuildmat.2019.117421

    Article  CAS  Google Scholar 

  17. S.R. Nayak and K.N.S. Mohana, Corrosion Protection Performance of Functionalized Graphene Oxide Nanocomposite Coating on Mild Steel, Surf. Interfaces, 2018, 11, p 63–73. https://doi.org/10.1016/j.surfin.2018.03.002

    Article  CAS  Google Scholar 

  18. K. Rajitha and K.N.S. Mohana, Application of Modified Graphene Oxide – Polycaprolactone Nanocomposite Coating for Corrosion Control of Mild Steel in Saline Medium, Mater. Chem. Phy., 2019, 241, 122050. https://doi.org/10.1016/j.matchemphys.2019.122050

    Article  CAS  Google Scholar 

  19. G. Liao, Y. Gong, C. Yi, and Z. Xu, Soluble, Antibaterial, and Anticorrosion Studies of Sulfonated Polystyrene/Polyaniline/Silver Nanocomposites Prepared with the Sulfonated Polystyrene Template, Chin. J. Chem., 2017, 35(7), p 1157–1164. https://doi.org/10.1002/cjoc.201600816

    Article  CAS  Google Scholar 

  20. C. Zhou, M. Hong, Y. Yang, N. Hu, Z. Zhou, L. Zhang, and Y. Zhang, Engineering Sulfonated Polyaniline Molecules on Reduced Graphene Oxide Nanosheets for High-Performance Corrosion Protective Coatings, Appl. Surf. Sci., 2019, 484, p 663–675. https://doi.org/10.1016/j.apsusc.2019.04.067

    Article  CAS  Google Scholar 

  21. S. Qiu, C. Chen, W. Zheng, W. Li, H. Zhao, and L. Wang, Long-Term Corrosion Protection of Mild Steel by Epoxy Coating Containing Self-Doped Polyaniline Nanofiber, Synth. Metals, 2017, 229, p 39–46. https://doi.org/10.1016/j.synthmet.2017.05.004

    Article  CAS  Google Scholar 

  22. Y. Hayatgheib, B. Ramezanzadeh, P. Kardar, and M. Mahdavian, A Comparative Study on Fabrication of a Highly Effective Corrosion Protective System Based on Graphene Oxide-Polyaniline Nanofibers/Epoxy Composite, Corros. Sci., 2018, 133, p 358–373. https://doi.org/10.1016/j.corsci.2018.01.046

    Article  CAS  Google Scholar 

  23. C. Jeyaprabha, S. Sathiyanarayanan, and G. Venkatachiari, Investigation of the Inhibitive Effect of Polyaniline on Corrosion of Iron in 05 M H2SO4 Solutions, J. Electroanal. Chem., 2005, 583, p 232–240.

    Article  CAS  Google Scholar 

  24. S. Pourhashem, E. Ghasemy, A. Rashidi, and M.R. Vaezi, Corrosion Protection Properties of Novel Epoxy Nanocomposite Coatings Containing Silane Functionalized Graphene Quantum Dots, J. Alloys Compd., 2018, 731, p 1112–1118.

    Article  CAS  Google Scholar 

  25. P. Du, S. Qiu, C.L. Guangzhou, L.H. Zhao, and L. Wang, In situ Polymerization of Sulfonated Polyaniline in Layered Double Hydroxide Host Matrix for Corrosion Protection, New J. Chem., 2018, 42, p 4201–4209.

    Article  CAS  Google Scholar 

  26. S. Chook, C. Chia, S. Zakaria, M. Ayob, K. Chee, N. Huang, H. Neoh, H. Lim, R. Jamal, and R. Rahman, Antibacterial Performance of Ag Nanoparticles and AgGO Nanocomposites Prepared via Rapid Microwave-Assisted Synthesis Method, Nanoscale Res. Lett., 2012, 7(1), p 541. https://doi.org/10.1186/1556-276x-7-541

    Article  Google Scholar 

  27. Q. Wu, G.E. Chen, W.G. Sun, Z.L. Xu, Y.F. Kong, X.P. Zheng, and S.J. Xu, Bio-Inspired GO-Ag/PVDF/F127 Membrane with Improved Anti-Fouling for Natural Organic Matter (NOM) Resistance, Chem. Eng. J., 2017, 313, p 450–460. https://doi.org/10.1016/j.cej.2016.12.079

    Article  CAS  Google Scholar 

  28. L.C. Mendes, A.P.S. Falco, M.S. Pinho, and P.O. Marques, Sulfonated Polyaniline: Influence of Sulfonation Routes on Its Thermal and Structural Characteristics, Mater. Res., 2011, 14(4), p 466–471. https://doi.org/10.1590/s1516-14392011005000070

    Article  CAS  Google Scholar 

  29. H. Ilyas, S. Shawuti, M. Siddiq, J.H. Niazi, and A. Qureshi, PEG Functionalized Graphene Oxide-Silver Nano-Additive for Enhanced Hydrophilicity, Permeability and Fouling Resistance Properties of PVDF-co-HFP Membranes, Colloids Surf. A, 2019, 579, 123646. https://doi.org/10.1016/j.colsurfa.2019.123646

    Article  CAS  Google Scholar 

  30. J. Chen, X. Zheng, H. Wang, and W. Zheng, Graphene Oxide-Ag Nanocomposite: In Situ Photochemical Synthesis and Application as a Surface-Enhanced Raman Scattering Substrate, Thin Solid Films, 2011, 520(1), p 179–185. https://doi.org/10.1016/j.tsf.2011.07.012

    Article  CAS  Google Scholar 

  31. Y. Liao, V. Strong, W. Chian, X. Wang, X.G. Li, and R.B. Kaner, Sulfonated Polyaniline Nanostructures Synthesized via Rapid Initiated Copolymerization with Controllable Morphology, Size, and Electrical Properties, Macromolecules, 2012, 45(3), p 1570–1579. https://doi.org/10.1021/ma2024446

    Article  CAS  Google Scholar 

  32. A. Shaikh, S. Parida, and S. Böhm, One Step Eco-Friendly Synthesis of Ag–Reduced Graphene Oxide Nanocomposite by Phytoreduction for Sensitive Nitrite Determination, RSC Adv., 2016, 6(102), p 100383–100391. https://doi.org/10.1039/c6ra23655c

    Article  CAS  Google Scholar 

  33. H. Jeon, J. Park, and M. Shon, Corrosion Protection by Epoxy Coating Containing Multi-Walled Carbon Nanotubes, J. Ind. Eng. Chem., 2013, 19(3), p 849–853. https://doi.org/10.1016/j.jiec.2012.10.030

    Article  CAS  Google Scholar 

  34. K. Rajitha, K.N.S. Mohana, A. Mohanan, and A.M. Madhusudhana, Evaluation of Anti-Corrosion Performance of Modified Gelatin-Graphene Oxide Nanocomposite Dispersed in Epoxy Coating on Mild Steel in Saline Media, Colloids Surf. A, 2020, 587, 124341. https://doi.org/10.1016/j.colsurfa.2019.124341

    Article  CAS  Google Scholar 

  35. F. Yang, T. Liu, J. Li, S. Qiu, and H. Zhao, Anticorrosive Behavior of a Zinc-Rich Epoxy Coating Containing Sulfonated Polyaniline in 35% NaCl Solution, RSC Adv., 2018, 8(24), p 13237–13247. https://doi.org/10.1039/c8ra00845k

    Article  CAS  Google Scholar 

  36. Z. Qi, Y. Tan, Z. Zhang, L. Gao, C. Zhang, and J. Tian, Synergistic Effect of Functionalized Graphene Oxide and Carbon Nanotube Hybrids on Mechanical Properties of Epoxy Composites, RSC Adv., 2018, 8(67), p 38689–38700. https://doi.org/10.1039/c8ra08312f

    Article  CAS  Google Scholar 

  37. M.B. Hegde, S.R. Nayak, K.N.S. Mohana, and N. Kumaraswamy, Garcinia Gummigutta Vegetable Oil–Graphene Oxide Nano-Composite: An Efficient and Eco-Friendly Material for Corrosion Prevention of Mild Steel in Saline Medium, J. Poly. Environ., 2020, 28, p 483–499. https://doi.org/10.1007/s10924-019-01611-y

    Article  CAS  Google Scholar 

  38. F. Soysal, Z. Çıplak, B. Getiren, C. Gökalp, and N. Yıldız, Synthesis of GO-Fe3O4-PANI Nanocomposite with Excellent NIR Absorption Property, Colloids Surf. A, 2019, 578, 123623. https://doi.org/10.1016/j.colsurfa.2019.123623

    Article  CAS  Google Scholar 

  39. C. Huang, C. Hao, W. Zheng, S. Zhou, L. Yang, X. Wang, C. Jiang, and L. Zhu, Synthesis of Polyaniline/Nickel Oxide/Sulfonated Graphene Ternary Composite for All-Solid-State Asymmetric Supercapacitor, Appl. Surf. Sci., 2019, 505, 144589. https://doi.org/10.1016/j.apsusc.2019.144589

    Article  CAS  Google Scholar 

  40. H. Vakili, B. Ramezanzadeh, and R. Amini, The Corrosion Performance and Adhesion Properties of the Epoxy Coating Applied on the Steel Substrates Treated by Cerium-Based Conversion Coatings, Corros. Sci., 2015, 94, p 466–475. https://doi.org/10.1016/j.corsci.2015.02.028

    Article  CAS  Google Scholar 

  41. S.R. Nayak, K.N. Mohana, and M.B. Hegde, Anticorrosion Performance of 4- Fluoro Phenol Functionalized Graphene Oxide Nanocomposite Coating on Mild Steel, J. Fluor. Chem., 2019, 228, 109392. https://doi.org/10.1016/j.jfluchem.2019.109392

    Article  CAS  Google Scholar 

  42. K. Qi, Y. Sun, H. Duan, and X. Guo, Corrosion-Protective Coating Based on a Solutionprocessable Polymer-Grafted Graphene Oxide Nanocomposite, Corros. Sci., 2015, 98, p 500–506. https://doi.org/10.1016/j.corsci.2015.05.056

    Article  CAS  Google Scholar 

  43. B. Ramezanzadeh, M.H.M. Moghadam, N. Shohani, and M. Mahdavian, Effects of Highly Crystalline and Conductive Polyaniline/Graphene Oxide Composites on the Corrosion Protection Performance of a Zinc-Rich Epoxy Coating, Chem. Eng. J., 2017, 320, p 363–375. https://doi.org/10.1016/j.cej.2017.03.061

    Article  CAS  Google Scholar 

  44. G. Christopher, M.A. Kulandainathan, and G. Harichandran, Comparative Study of Effect of Corrosion on Mild Steel with Waterborne Polyurethane Dispersion Containing Graphene Oxide Versus Carbon Black Nanocomposites, Prog. Org. Coat., 2015, 89, p 199–211. https://doi.org/10.1016/j.porgcoat.2015.09.022

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikkeri Narasimha Shetty Mohana.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, S.R., Mohana, K.N.S., Rajitha, K. et al. Silver-Decorated Reduced Graphene Oxide–Sulfonated Polyaniline Ternary Nanocomposite: A Highly Reliable Anti-Corrosion Coating Material for Mild Steel. J. of Materi Eng and Perform (2023). https://doi.org/10.1007/s11665-023-08796-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-08796-3

Keywords

Navigation