Log in

Garcinia gummigutta Vegetable Oil–Graphene Oxide Nano-composite: An Efficient and Eco-friendly Material for Corrosion Prevention of Mild Steel in Saline Medium

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Garcinia gummigutta vegetable oil (GGVO) is a rich source of stearic and oleic acid which on heat treatment at around 300 °C, will get polymerized with highly conjugated network system. The present work intended to exploit the properties of GGVO for the production of eco-friendly anti-corrosion coating material. The oil extracted from GG seeds was used to prepare graphene oxide (GO) dispersion in oil and successfully employed as an efficient anti-corrosion coating material on mild steel (MS). All coatings are done by simple heat treatment of dip-coated MS specimen. The corrosion prevention ability of the coating was studied by potentiodynamic polarization and electrochemical impedance spectroscopy techniques in 3.5% NaCl solution. Electrochemical results showed that the addition of GO significantly enhances the corrosion inhibition performance of the GGVO coating. The inhibition efficiency of the GGVO coating increased from 93.0 to 99.8% on the incorporation of 0.3 wt% of GO into the oil. The enhancement of the corrosion prevention ability of the GO ink is discussed based on the impermeable action of GO to the corrosive ions and also suppression of the number of pores in the polymer that is formed during the curing of the coating.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Armelin E, Pla R, Liesa F (2008) Corros Sci 50:721–728

    CAS  Google Scholar 

  2. Husain E, Narayanan TN, Taha-Tijerina JJ (2013) ACS Appl Mater Interfaces 5:4129–4135

    CAS  PubMed  Google Scholar 

  3. Chen L, Zhou S, Song S, Zhang B, Gu G (2011) J Coat Technol Res 8:481–487

    CAS  Google Scholar 

  4. Liu Y, Sun D, You H, Chung JS (2005) Appl Surf Sci 246:82–89

    CAS  Google Scholar 

  5. Yu D, Tian J, Dai J, Wang X (2013) Electrochim Acta 97:409–419

    CAS  Google Scholar 

  6. Gao W, Li Z (2004) Mater Res 7:175–182

    CAS  Google Scholar 

  7. Kirkland NT, Schiller T, Medhekar N, Birbilis N (2012) Corros Sci 56:1–4

    CAS  Google Scholar 

  8. Chen S, Brown L, Levendorf M (2011) ACS Nano 5:1321–1327

    CAS  PubMed  Google Scholar 

  9. Chang KC, Hsu MH, Lu HI (2014) Carbon N Y 66:144–153

    CAS  Google Scholar 

  10. Mondal J, Marques A, Aarik L, Kozlova J, Simoes A, Sammelselg V (2016) Corros Sci 105:161–169

    CAS  Google Scholar 

  11. Yoo BM, Shin HJ, Yoon HW, Park HB (2014) J Appl Polym Sci 131:1–23

    Google Scholar 

  12. Su Y, Kravets VG, Wong SL (2014) Nat Commun 5:1–5

    Google Scholar 

  13. Chaudhry AU, Mittal V, Mishra B (2015) Mater Chem Phys 163:130–137

    CAS  Google Scholar 

  14. **e W, Huang M (2018) Energy Convers Manag 159:42–53

    CAS  Google Scholar 

  15. Comlekci GK, Ulutan S (2019) Prog Org Coat 129:292–299

    Google Scholar 

  16. Miao S, Wang P, Su Z, Zhang S (2014) Acta Biomater 10:1692–1704

    CAS  PubMed  Google Scholar 

  17. Alam M, Alandis NM (2011) J Polym Environ 19(2):391–397

    CAS  Google Scholar 

  18. Balakrishnan T, Sathiyanarayanan S, Mayavan S (2015) ACS Appl Mater Interfaces 7:19781–19788

    CAS  PubMed  Google Scholar 

  19. Singhbabu YN, Sivakumar B, Singh JK (2015) Nanoscale 7:8035–8047

    CAS  PubMed  Google Scholar 

  20. Choppa T, Selvaraj CI, Zachariah A (2015) J Food Sci Technol 52(9):5906–5913

    CAS  PubMed  Google Scholar 

  21. Parthasarathy U, Nandakishore OP, Senthil Kumar R, Parthasarathy VA (2014) J Glob Biosci 3(6):872–880

    Google Scholar 

  22. Narasimharao K, Venkata Ramana G, Sreedhar D, Vasudevarao V (2016) J Mater Sci Eng 5:284. https://doi.org/10.4172/2169-0022.1000284

    Article  CAS  Google Scholar 

  23. Sims RPA (1957) J Am Oil Chem Soc 34(9):466–469

    CAS  Google Scholar 

  24. Wang C, Erhan S (1999) J Am Oil Chem Soc 76:1211–1216

    CAS  Google Scholar 

  25. Guner FS (1997) J Am Oil Chem Soc 74:1525–1529

    CAS  Google Scholar 

  26. Brioude MM, Guimaraes DH, Fiuza RP, Prado LASA, Boaventura JS, Jose NM (2007) Mater Res 10(4):335–339

    CAS  Google Scholar 

  27. Pakhomov P, Khizhnyak S, Tshmel A (2010) Laser Phys 20:936–947

    CAS  Google Scholar 

  28. Pakhomov P, Khizhnyak S, Galitsyn V, Rogova E, Hartmann B, Tshmel A (2011) Macromol Symp 305(1):63–72

    CAS  Google Scholar 

  29. Emran MY, Shenashen MA, Morita H, El-Safty SA (2018) Adv Healthc Mater 7(16):1701459

    Google Scholar 

  30. Emran MY, Shenashen MA, Abdelwahab AA, Khalifa H, Mekawy M, Akhtar N, Abdelmottaleb M, El-Safty SA (2018) J Appl Electrochem 48(5):529–542

    CAS  Google Scholar 

  31. Shi X, Nguyen TA, Suo Z (2009) Surf Coat Technol 204:237–245

    CAS  Google Scholar 

  32. Liang G, Schmauder S, Lyu M, Schneider Y, Zhang C, Han Y (2018) Materials (Basel) 11(2):237

    Google Scholar 

  33. Siu JHW, Li LKY (2000) Wear 237:283–287

    CAS  Google Scholar 

  34. Li J, Ecco L, Delmas G, Whitehouse N, Collins P, Deflorian F, Pan J (2014) J Electrochem Soc 162:55–63

    Google Scholar 

  35. Almansour A, Azizi M, Jesri AM, Entakly S (2015) Int J Acad Sci Res 3:37–45

    Google Scholar 

  36. Li W, Li DY (2006) Acta Mater 54:445–452

    CAS  Google Scholar 

  37. Han D, Yan L, Chen W, Li W (2011) Carbohydr Polym 83:653–658

    CAS  Google Scholar 

  38. Sangaj NS, Malshe VC (2004) Prog Org Coat 50:28–39

    CAS  Google Scholar 

  39. Yuan S, Pehkonen SO, Liang B, Ting YP, Neoh KG, Kang ET (2011) Corros Sci 53:2738–2747

    CAS  Google Scholar 

  40. Lorenz WJ (1981) Corros Sci 21:647–672

    CAS  Google Scholar 

  41. Palimi MJ, Rostami M, Mahdavian M, Ramezanzadeh B (2015) J Coat Technol Res 12:277–292

    CAS  Google Scholar 

  42. Ramezanzadeh B, Niroumandrad S, Ahmadi A, Mahdavian M, Moghadam MM (2016) Corros Sci 103:283–304

    CAS  Google Scholar 

  43. Mansfeld F (1990) Electrochim Acta 35(10):1533–1544

    CAS  Google Scholar 

  44. Alsamuraee A, Jaafer H (2011) Am J Sci Ind Res 2:761–768

    Google Scholar 

  45. Mayavan S, Siva T, Sathiyanarayanan S (2013) RSC Adv 3:24868–24871

    CAS  Google Scholar 

  46. Yu YH, Lin YY, Lin CH, Chan CC, Huang YC (2014) Polym Chem 5:535–550

    CAS  Google Scholar 

  47. Gomez-Aguilar JF, Escalante-Martinez JE, Calderon-Ramon C, Morales-Mendoza LJ, Benavidez-Cruz M, Gonzalez-Lee M (2016) Adv Math Phys 2016, Article ID 9720181

  48. Dhoke SK, Rajgopalan N, Khanna AS (2012) Int J Mater Sci 2:47–55

    Google Scholar 

  49. Nayak SR, Mohana KNS (2018) Surf Interfaces 11:63–73

    CAS  Google Scholar 

  50. Yu D, Tian J, Dai J, Wang X (2014) Corrosion 70:329–336

    CAS  Google Scholar 

  51. Chaitra TK, Mohana KNS, Tandon HC (2015) J Mol Liq 211:1026–1038

    CAS  Google Scholar 

Download references

Acknowledgements

The corresponding author and co-authors acknowledges Institution of Excellence and Center for Material Science and Technology, University of Mysore, Mysuru, India, for the instrumentation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kikkeri Narasimha Shetty Mohana.

Ethics declarations

Conflicts of interest

The corresponding author and co-authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hegde, M.B., Nayak, S.R., Mohana, K.N.S. et al. Garcinia gummigutta Vegetable Oil–Graphene Oxide Nano-composite: An Efficient and Eco-friendly Material for Corrosion Prevention of Mild Steel in Saline Medium. J Polym Environ 28, 483–499 (2020). https://doi.org/10.1007/s10924-019-01611-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-019-01611-y

Keywords

Navigation