Log in

Dye-Sensitized Solar Cells Based on Hybrid Photoanodes Consisting of ZnO Nanorods Embedded in TiO2 Nanoparticles

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

One-dimensional (1D) nanostructures such as nanotubes, nanowires and nanorods (NRs) with suitable properties are emerging as novel candidates for integration into photoanodes (PAs) of dye-sensitized solar cells (DSSCs). In this work, a hybrid PA-based DSSC is designed, which consists of a mesoporous layer of TiO2 nanoparticles (NPs) modified with ZnO NRs. The presence of NPs imparts an increase of loading dye while the NRs facilitate charge transport and avert electron recombination in the system. We report a remarkable enhancement in power conversion efficiency of about 48.1% with respect to the hybrid PA-based DSSC, resulting in an efficiency of 4.91% mainly dictated by a high short-circuit current (Jsc) of 13.46 mA/cm2. Such excellent performance is attributed to the improved charge transport, better injection rate and lowered recombination of photoelectrons on the hybrid PA. The results strongly suggest that the ZnO NRs/TiO2 NP-based PAs accomplish a complementary effect in DSSC devices and consequently might be extended to similar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The raw data are available at the corresponding author and can be presented for reasonable requests.

References

  1. H. Tian, X. Wang, Y. Zhu, L. Liao, X. Wang, J. Wang, and W. Hu, High Performance Top-Gated Ferroelectric Field Effect Transistors Based on Two-Dimensional ZnO Nanosheets. Appl. Phys. Lett. 110, 043505 (2017).

    Article  Google Scholar 

  2. G. Sığırcık and E.B. Aydın, Electrochemical Synthesize and Characterization of ZnO/ZnS Nanostructures for Hydrogen Production. Int. J. Energy Res. 44, 11756 (2020).

    Article  Google Scholar 

  3. A.M. Galdámez, Y. Bai, G. Santana, R.S. Sprick, and A. Dutt, Photocatalytic Hydrogen Production Performance of 1-D ZnO Nanostructures: Role of Structural Properties. Int. J. Hydrog. Energy 45, 31942 (2020).

    Article  Google Scholar 

  4. A. Verma, P. Chaudhary, R.K. Tripathi, and B.C. Yadav, Transient Photodetection Studies on 2D ZnO Nanostructures Prepared by Simple Organic-Solvent Assisted Route. Sens. Actuators A 321, 112600 (2021).

    Article  CAS  Google Scholar 

  5. Y.Y. Zhang, M.K. Ram, E.K. Stefanakos, and D.Y. Goswami, Synthesis, Characterization, and Applications of ZnO Nanowires. J. Nanomater. 2012, 1 (2012).

    Google Scholar 

  6. E.M. Kaidashev, M.V. Lorenz, H.V. Wenckstern, A. Rahm, H.C. Semmelhack, K.H. Han, and M. Grundmann, High Electron Mobility of Epitaxial ZnO Thin Films on c-Plane Sapphire Grown by Multistep Pulsed-Laser Deposition. Appl. Phys. Lett. 82, 3901 (2003).

    Article  CAS  Google Scholar 

  7. P.P. Das, A. Roy, S. Agarkar, and P.S. Devi, Hydrothermally Synthesized Fluorescent Zn2SnO4 Nanoparticles for Dye Sensitized Solar Cells. Dyes Pigm. 154, 303 (2013).

    Article  Google Scholar 

  8. A.F. Fonseca, R.L. Siqueira, R. Landers, J.L. Ferrari, N.L. Marana, J.R. Sambrano, and M.A. Schiavon, A Theoretical and Experimental Investigation of Eu-Doped ZnO Nanorods and its Application on Dye Sensitized Solar Cells. J. Alloy. Compd. 739, 939 (2018).

    Article  Google Scholar 

  9. M. Sufyan, U. Mehmood, Y.Q. Gill, R. Nazar, and A.U. Khan, Hydrothermally Synthesize Zinc Oxide (ZnO) Nanorods as an Effective Photoanode Material for Third-Generation Dye-Sensitized Solar Cells (DSSCs). Mater. Lett. 297, 130017 (2021).

    Article  CAS  Google Scholar 

  10. S. Borbón, S. Lugo, D. Pourjafari, N.P. Aguilar, G. Oskam, and I. López, Open-Circuit Voltage (VOC) Enhancement in TiO2-Based DSSCs: Incorporation of ZnO Nanoflowers and Au Nanoparticles. ACS Omega 5, 10977 (2020).

    Article  Google Scholar 

  11. S.R. Bhattacharyya, Z. Mallick, and R.N. Gayen, Vertically Aligned Al-Doped ZnO Nanowire Arrays as Efficient Photoanode for Dye-Sensitized Solar Cells. J. Electron. Mater. 49, 3860 (2020).

    Article  CAS  Google Scholar 

  12. S. Kannan, N.P. Subiramaniyam, and S.U. Lavanisadevi, Dye-Sensitized Solar Cells Based on TiO2 Nanoparticles-Decorated ZnO Nanorod Arrays for Enhanced Photovoltaic Performance. J. Mater. Sci. Mater. Electron. 31, 8514 (2020).

    Article  CAS  Google Scholar 

  13. Q. Zhang, S. Hou, and C. Li, Titanium Dioxide-Coated Zinc Oxide Nanorods as an Efficient Photoelectrode in Dye-Sensitized Solar Cells. Nanomaterials 10, 1598 (2020).

    Article  CAS  Google Scholar 

  14. M. Ramya, T.K. Nideep, V.P. Nampoori, and M. Kailasnath, Solvent Assisted Evolution and Growth Mechanism of Zero to Three Dimensional ZnO Nanostructures for Dye Sensitized Solar Cell Applications. Sci. Rep. 11, 1 (2021).

    Article  Google Scholar 

  15. H. Cheema and J.H. Delcamp, SnO2 Transparent Printing Pastes from Powders for Photon Conversion in SnO2-Based Dye-Sensitized Solar Cells. Chem. Eur. J. 25, 14205 (2019).

    Article  CAS  Google Scholar 

  16. A. Yildiz, S.B. Lisesevdin, M. Kasap, D. Mardare, High Temperature Variable-Range Hop** Conductivity in Undoped TiO2 Thin Film. Optoelectr. Adv. Mater. 10, 531 (2007)

  17. D. Mardare, A. Yildiz, M. Girtan, A. Manole, M. Dobromir, M. Irimia, C. Adomnitei, N. Cornei, and D. Luca, Surface Wettability of Titania Thin Films with Increasing Nb Content. J. Appl. Phys. 112, 073502 (2012).

    Article  Google Scholar 

  18. T. Serin, A. Yildiz, S.H. Sahin, and N. Serin, Multiphonon Hop** of Carriers in CuO. Phys. B Condens. Matter 406, 3551 (2011).

    Article  CAS  Google Scholar 

  19. Z.K. Yildiz, A. Atilgan, A. Atli, K. Ozel, C. Altinkaya, and A. Yildiz, Enhancement of Efficiency of Natural and Organic Dye Sensitized Solar Cells using Thin Film TiO2 Photoanodes Fabricated by Spin-Coating. J. Photochem. Photobiol. A Chem. 368, 23 (2019).

    Article  CAS  Google Scholar 

  20. T. Serin, A. Yildiz, Ş Uzun, E. Çam, and N. Serin, Electrical Conduction Properties of In-Doped ZnO Thin Films. Phys. Scr. 84, 065703 (2011).

    Article  Google Scholar 

  21. A. Yildiz, H. Cansizoglu, M. Turkoz, R. Abdulrahman, A. Al-Hilo, M.F. Cansizoglu, T.M. Demirkan, and T. Karabacak, Glancing Angle Deposited Al-Doped ZnO Nanostructures with Different Structural and Optical Properties. Thin Solid Films 589, 764 (2015).

    Article  CAS  Google Scholar 

  22. R. Ruess, S. Scarabino, A. Ringleb, K. Nonomura, N. Vlachopoulos, A. Hagfeldt, G. Wittstock, and D. Schlettwein, Diverging Surface Reactions at TiO2-or ZnO-Based Photoanodes in Dye-Sensitized Solar Cells. Phys. Chem. Chem. Phys. 21, 13047 (2019).

    Article  CAS  Google Scholar 

  23. M.R. Parra, P. Pandey, H. Siddiqui, V. Sudhakar, K. Krishnamoorthy, and F.Z. Haque, Evolution of ZnO Nanostructures as Hexagonal Disk: Implementation as Photoanode Material and Efficiency Enhancement in Al: ZnO Based Dye Sensitized Solar Cells. Appl. Surf. Sci. 470, 1130 (2019).

    Article  Google Scholar 

  24. Y.H. Nien, G.M. Hu, M. Rangasamy, H.H. Chen, H.H. Hsu, J.C. Chou, and J.X. Chang, Investigation of Dye-Sensitized Solar Cell With Photoanode Modified by TiO2-ZnO Nanofibers. IEEE Trans. Semicond. Manuf. 33, 295 (2020).

    Article  Google Scholar 

  25. S.J. Ko, H. Choi, Q.V. Hoang, C.E. Song, P.O. Morin, J. Heo, M. Levlerc, S.C. Yoon, H.Y. Woo, W.S. Shin, B. Walke, and J.Y. Kim, Modeling and İmplementation of Tandem Polymer Solar Cells using Wide-Bandgap Front Cells. Carbon Energy 2, 131 (2020).

    Article  Google Scholar 

  26. S.M. Pawar, K.V. Gurav, S.W. Shin, D.S. Choi, I.K. Kim, C.D. Lokhande, and J.H. Kim, Effect of Bath Temperature on the Properties of Nanocrystalline ZnO Thin Films. J. Nanosci. Nanotechnol. 10, 3412 (2010).

    Article  CAS  Google Scholar 

  27. A. Subramanian and H.W. Wang, Effects of Boron Do** in TiO2 Nanotubes and the Performance of Dye-Sensitized Solar Cells. Appl. Surf. Sci. 258, 6479 (2012).

    Article  CAS  Google Scholar 

  28. Y. Wang, Y. Sun, and K. Li, Dye-Sensitized Solar Cells Based on Oriented ZnO Nanowire-Covered TiO2 Nanoparticle Composite Film Electrodes. Mater. Lett. 63, 1102 (2009).

    Article  CAS  Google Scholar 

  29. A. Prilia, H. Fernando, L. Safriani, A. Bahtiar, and R. Hidayat, DSSC Heterojunction photoelectrode based ZnO-nanorod/TiO2; Dependency of photoelectrode morphology investigated by calculating IV curves. Jurnal Material dan Energi Indonesia. 10, 20 (2020).

    Google Scholar 

  30. Y. Bai, H. Yu, Z. Li, R. Amal, G.Q. Lu, and L. Wang, In Situ Growth of a ZnO Nanowire Network Within a TiO2 Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance. Adv. Mater. 24, 5850 (2012).

    Article  CAS  Google Scholar 

  31. G. Yang, Q. Wang, C. Miao, Z. Bu, and W. Guo, Enhanced Photovoltaic Performance of Dye-Sensitized Solar Cells Based on ZnO Microrod Array/TiO2 Nanoparticle Hybrid Films. J. Mater. Chem. A 1, 3112 (2013).

    Article  CAS  Google Scholar 

  32. G. Yang, C. Miao, Z. Bu, Q. Wang, and W. Guo, Seed Free and Low Temperature Growth of ZnO Nanowires in Mesoporous TiO2 Film for Dye-Sensitized Solar Cells with Enhanced Photovoltaic Performance. J. Power Sour. 233, 74 (2013).

    Article  CAS  Google Scholar 

  33. M. Gurulakshmi, A. Meenakshamma, K. Susmitha, Y.P.V. Subbaiah, and R. Mitty, Enhanced Performance of Dye‐Sensitized Solar Cells (DSSCs) Based on MoS2/Single‐Walled Carbon Nanohorns Electrochemically Deposited on Bilayer Counter Electrodes. ChemPlusChem 85, 2599 (2020).

    Article  CAS  Google Scholar 

  34. B. Tang, G. Hu, H. Gao, and Z. Shi, Three-Dimensional Graphene Network Assisted High Performance Dye Sensitized Solar Cells. J. Power Sour. 234, 60 (2013).

    Article  CAS  Google Scholar 

  35. A. Atli, A. Atilgan, and A. Yildiz, Multi-layered TiO2 Photoanodes from Different Precursors of Nanocrystals for Dye-Sensitized Solar Cells. Sol. Energy 173, 752 (2018).

    Article  CAS  Google Scholar 

  36. K. Ozel, A. Atilgan, N.E. Koksal, and A. Yildiz, A Route Towards Enhanced UV Photo-Response Characteristics of SnO2/p-Si Based Heterostructures by Hydrothermally Grown Nanorods. J. Alloys Compd. 849, 156628 (2020).

    Article  CAS  Google Scholar 

  37. V. Kumar, R. Gupta, and A. Bansal, Hydrothermal Growth of ZnO Nanorods for Use in Dye-Sensitized Solar Cells. ACS Appl. Nano Mater. 4, 6212 (2021).

    Article  CAS  Google Scholar 

  38. N. Ullah, S.M. Shah, R. Ansir, S.E. Ela, S. Mushtaq, and S. Zafar, Pyrocatechol Violet Sensitized Cadmium and Barium Doped TiO2/ZnO Nanostructures: As Photoanode in DSSC. Mater. Sci. Semicond. Process. 135, 106119 (2021).

    Article  CAS  Google Scholar 

  39. B.B. Çırak, Ç. Eden, Y. Erdoğan, Z. Demir, K.V. Özdokur, B. Caglar, S.M. Karadeniz, T. Kılınç, A.E. Ekinci, and Ç. Çırak, The Enhanced Light Harvesting Performance of Dye-Sensitized Solar Cells Based on ZnO Nanorod-TiO2 Nanotube Hybrid Photoanodes. Optik 203, 163963 (2020).

    Article  Google Scholar 

  40. A. Atli and A. Yildiz, Opaque Pt Counter Electrodes for Dye-Sensitized Solar Cells. Int. J. Energy Res. 46, 654 (2022).

    Article  Google Scholar 

  41. A. Atilgan and A. Yildiz, Ni-doped TiO2/TiO2 Homojunction Photoanodes for Efficient Dye-Sensitized Solar Cells. Int. J. Energy Res. (2022). https://doi.org/10.1002/er.8175.

    Article  Google Scholar 

  42. A. Atli, A. Atilgan, C. Altinkaya, K. Ozel, and A. Yildiz, St. Lucie Cherry, Yellow Jasmine, and Madder Berries as Novel Natural Sensitizers for Dye‐Sensitized Solar Cells. Int. J. Energy Res. 43, 3914 (2019).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors have equal contribution to the study.

Corresponding author

Correspondence to Z. K. Yildiz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildiz, Z.K., Erel, S. Dye-Sensitized Solar Cells Based on Hybrid Photoanodes Consisting of ZnO Nanorods Embedded in TiO2 Nanoparticles. J. Electron. Mater. 51, 6188–6195 (2022). https://doi.org/10.1007/s11664-022-09865-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-022-09865-4

Keywords

Navigation