Log in

Dye-sensitized solar cells based on TiO2 nanoparticles-decorated ZnO nanorod arrays for enhanced photovoltaic performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, we report a successful approach for the vertically aligned ZnO nanorod arrays (ZNAs) deposited on fluorine-doped tin oxide (FTO) substrate by hydrothermal process. TiO2 nanoparticles were grown on the ZNAs by dip-coating. ZNAs and TiO2 nanoparticles (TNPs)-decorated ZNAs (TNPs@ZNAs) were used as a photoanode in dye-sensitized solar cells. The influence of bath temperature for the attainment of uniform decoration of TiO2 nanoparticles onto ZnO nanorod arrays and the photovoltaic performances of the assembled dye-sensitized solar cells were studied. The power conversion efficiency (PCE) of the TNPs@ZNAs arrays prepared at a bath temperature of 120 °C can reach 4.47%, representing better improvement when compared with ZNAs photoanode (3.15%).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B. O’Regan, M. Grätzel, Nature 353, 737 (1991)

    Google Scholar 

  2. M. Grätzel, Nature 414, 338 (2001)

    Google Scholar 

  3. M. Durr, A. Bamedi, A. Yasuda, G. Nelles, Appl. Phys. Lett. 84, 3397 (2003)

    Google Scholar 

  4. T. Sagawa, S. Yoshikawa, H. Imahori, J. Phys. Chem. Lett. 1, 1020 (2010)

    CAS  Google Scholar 

  5. J. Jiu, S. Isoda, F. Wang, M. Adachi, J. Phys. Chem. B. 110, 2087 (2006)

    CAS  Google Scholar 

  6. J. Chung, J. Lee, S. Lim, Physica B 405, 2593 (2010)

    CAS  Google Scholar 

  7. L. Dloczik, O. Ileperuma, I. Lauermann, J. Phys. Chem. B. 101, 10281 (1997)

    CAS  Google Scholar 

  8. N. Kopidakis, K.D. Benkstein, J. Van De Lagemaat, A.J. Frank, Q. Yuan, E.A. Schiff, Phys. Rev. B 73, 4 (2006)

    Google Scholar 

  9. M. Quintana, T. Edvinsson, A. Hagfeldt, G. Boschloo, J. Phys. Chem. C 111, 1035 (2007)

    CAS  Google Scholar 

  10. E.M. Kaidashev, M. Lorenz, H. Von Wenckstern, Appl. Phys. Lett. 82, 3901 (2003)

    CAS  Google Scholar 

  11. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    CAS  Google Scholar 

  12. L.T. Yan, F.L. Wu, L. Peng, Int. J. Photoenergy. 2012, 1 (2012)

    Google Scholar 

  13. M. Quintana, T. Edvinsson, A. Hagfeldt, G.J. Boschloo, J. Phys. Chem. C 111, 1035 (2006)

    Google Scholar 

  14. D. Chen, H. Zhang, S.H.J. Li, J. Phys. Chem. C 112, 117 (2008)

    CAS  Google Scholar 

  15. M.K. Nazeeruddin, R. Splivallo, P. Liska, P. Comte, M. Gratzel, Chem. Commun. 12, 1456 (2003)

    Google Scholar 

  16. A. Usami, Chem. Phys. Lett. 277, 105 (1997)

    CAS  Google Scholar 

  17. J. Ferber, J. Luther, Sol. Energy Mater. Sol. Cells. 54, 265 (1998)

    CAS  Google Scholar 

  18. G. Rothenberger, P. Comte, M. Gratzel, Sol. Energy Mater. Sol. Cells. 58, 321 (1999)

    CAS  Google Scholar 

  19. Q.P. Luo, B.X. Lei, X.Y. Yu, D.B. Kuang, C.Y. Su, J. Mater. Chem. 21, 8709 (2011)

    CAS  Google Scholar 

  20. Y. Hsu, Y. **, A. Djurisic, A. Chan, Appl. Phys. Lett. 92, 133507 (2008)

    Google Scholar 

  21. A.B.F. Martinson, J.W. Elam, J.T. Hupp, M.J. Pellin, Nano Lett. 7, 2183 (2007)

    CAS  Google Scholar 

  22. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Nanotechnology 21, 405203 (2010)

    Google Scholar 

  23. R.A. Jensen, H. Van Ryswyk, C. She, J.M. Szarko, L.X. Chen, J.T. Hupp, Langmuir 26, 1401 (2009)

    Google Scholar 

  24. J.J. Wu, G.R. Chen, H.H. Yang, C.H. Ku, J.Y. Lai, Appl. Phys. Lett. 90, 213109 (2007)

    Google Scholar 

  25. Y. Gao, M. Nagai, T.C. Chang, J.J. Shyue, Cryst. Growth Des. 7, 2467 (2007)

    CAS  Google Scholar 

  26. B. Pradhan, S.K. Batabyal, A.J. Pal, Sol. Energy Mater. Sol. Cells. 91, 769 (2007)

    CAS  Google Scholar 

  27. K. Lee, D. Kim, P. Schmuki, Chem. Commun. 47, 5789 (2011)

    CAS  Google Scholar 

  28. X. Feng, K. Shankar, O.K. Varghese, M. Paulose, T.J. Latempa, C.A. Grimes, Nano Lett. 8, 3781 (2008)

    CAS  Google Scholar 

  29. W.Y. Kim, S.W. Kim, D.H. Yoo, E.J. Kim, S.H. Hahn, Int. J. Photoenergy. 2013, 7 (2013)

    Google Scholar 

  30. C.H. Ashok, K. Venkateswara Rao, Superlattice. Microst. 76, 46 (2014)

    CAS  Google Scholar 

  31. V. Simelys Hernández, A. Cauda, S. Chiodoni, A. Dallorto, D. Sacco, D. Hidalgo, Edvige Celasco, and Candido Fabrizio Pirri. ACS Appl. Mater. Interfaces. 6, 12153 (2014)

    Google Scholar 

  32. L..-K.. Liau, Yun-Guo Lin Solid State Electron. 103, 54 (2015)

    CAS  Google Scholar 

  33. Y. Chen, C. Zhang, W. Huang, C. Yang, T. Huang, Y. Situ, H. Huang, Surf. Coat. Tech. 258, 531 (2013)

    Google Scholar 

  34. V. Stengl, V. Houskova, S. Bakardjieva, N. Murafa, ACS Appl. Mater. Interfaces 2, 575 (2010)

    CAS  Google Scholar 

  35. S.M. Pawar, K.V. Gurav, S.W. Shin, D.S. Choi, I.K. Kim, C.D. Lokhande, J.I. Rhee, J.H. Kim, J. Nanosci. Nanotechno. 10(5), 3412–3415 (2010)

    CAS  Google Scholar 

  36. T.S. Senthil, N. Muthukumarasamy, M. Kang, Mater. Lett. 102–103, 26–29 (2013)

    Google Scholar 

  37. M. Gao, L. Zhu, W.L. Ong, J. Wang, G.W. Ho, Catal. Sci. Technol. 5, 4703 (2015)

    CAS  Google Scholar 

  38. M.U. Rahman, M. Wei, F. **e, Matiullah Khan, Catalysts 9, 273 (2019)

    CAS  Google Scholar 

  39. S. Suresh, A. Pandikumar, S. Murugesan, R. Ramaraj, S.P. Raj, Sol. Energy 85, 1787 (2011)

    CAS  Google Scholar 

  40. Z. Lan, J. Wu, J. Lin, M. Huang, ‎J. Power Sour. 164, 921 (2007)

    CAS  Google Scholar 

  41. B. Zhai, L. Yang, Y.M. Huang. J. Nanomater. 2017, 1821837 (2017)

    Google Scholar 

  42. Y. Waghadkar, M. Shinde, S. Rane, S. Gosavi, C. Terashima, A. Fujishima, R. Chauhan, J. Solid. State. Electr. 22, 3621 (2018)

    CAS  Google Scholar 

  43. N. Sriharan, N. Muthukumarasamy, T.S. Senthil, M. Kang, J. Solgel Sci. Technol. 85, 743 (2018)

    CAS  Google Scholar 

  44. Y. Feng, X. Ji, J. Duan, J. Zhu, J. Jiang, H. Ding, G. Meng, R. Ding, J. Liu, A. Hu, X. Huang, J. Solid. State. Chem. 190, 303 (2012)

    CAS  Google Scholar 

  45. Y. Jiang, Y. Yan, W. Zhang, L. Nia, Y. Sun, H. Yin, Appl. Surf. Sci. 257, 6583 (2011)

    CAS  Google Scholar 

  46. G.K.L. Goh, H. Quang, T.J. Huang, B.T.T. Hui, J. Solid State Chem. 214, 17 (2014)

    CAS  Google Scholar 

  47. A. Irannejad, K. Janghorban, O.K. Tan, H. Huang, C.K. Lim, P.Y. Tan, X. Fang, C.S. Chua, S. Maleksaeedi, S.M.H. Hejazi, M.M. Shahjamali, M. Ghaffari, Electrochim. Acta 58, 19 (2011)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kannan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kannan, S., Subiramaniyam, N.P. & Lavanisadevi, S. Dye-sensitized solar cells based on TiO2 nanoparticles-decorated ZnO nanorod arrays for enhanced photovoltaic performance. J Mater Sci: Mater Electron 31, 8514–8522 (2020). https://doi.org/10.1007/s10854-020-03387-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-03387-7

Keywords

Navigation