Log in

Copper-Doped ZnO Thin Films Deposited by Spray Pyrolysis: Effect of Water Content in Starting Solution on Methylene Blue Degradation by Photocatalysis

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Copper-doped zinc oxide (ZnO:Cu) thin films were deposited by an ultrasonic spray pyrolysis technique on glass substrates. Do** concentration was maintained at 3 at %, and the deposition temperature was 450°C. The water content in the starting solution was varied in order to study its effect on the degradation of methylene blue (MB) dye by a photocatalytic process. X-ray diffraction patterns confirm the ZnO wurtzite structure and scanning electron microscopy analysis shows morphologies with different types of grains with average sizes varying from 90 to 300 nm. All the films achieved a maximum MB degradation of about 74% for a UV light exposition time of 180 min. However, the degradation behavior with respect to UV exposition time is different for each film. Two different degradation rates (0–90 min and 120–180 min exposure times, respectively) were performed for all ZnO films, and their photocatalytic response is related to the obtained surface morphology, which is explicated in this work. The films deposited with 80% water content in the starting solution are more promising for MB degradation when the UV exposure times are longer than 180 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  1. D.P. Loucks, E. van Beek, and E. Water resources planning and management: an overview. In: Water Resource Systems Planning and Management (Springer, Cham, 2017)

  2. A. Ghosh, N. Kumar, and A. Bhattacharjee, Pramana 84, 621 (2015).

    Article  CAS  Google Scholar 

  3. N. Narayanan, and N.K. Deepak, Optik 158, 1313 (2018).

    Article  CAS  Google Scholar 

  4. A. Gaurav, R. Beura, J.S. Kumar, and P. Thangadurai, Mater. Chem. Phys. 230, 162 (2019).

    Article  CAS  Google Scholar 

  5. K.V.A. Kumar, B. Lakshminarayana, T. Vinodkumar, and C. Subrahmanyam, J. Environ. Chem. Eng. 7, 103057 (2019).

    Article  CAS  Google Scholar 

  6. J.-T. Chen, M. Lee, W. Den, Preparation of ZnO Photocatalyst by Plasma-Enhanced Vapor Deposition and Their Photocatalytic Activity, Green Catalysts for Energy Transformation and Emission Control, Chapter 6, pp. 111–120.

  7. A.D. Saragih, H. Abdullah, and D.-H. Kuo, J. Phys. Conf. Ser. 1230, 012031 (2018).

    Article  Google Scholar 

  8. A. Smith, Thin Solid Films 376, 47 (2000).

    Article  CAS  Google Scholar 

  9. J.F. Jurado, A. Londono-Calderon, F.F. Jurado-Lasso, and J.D. Romero-Salazar, Rev. Mex. Fis. 60, 296 (2014).

    CAS  Google Scholar 

  10. F. Zahedi, R.S. Dariani, and S.M. Rozati, Acta Metall. Sin.-Engl. 28, 110 (2015).

    Article  CAS  Google Scholar 

  11. G. Kenanakis, N. Katsarakis, and E. Koudoumas, Thin Solid Films 555, 62 (2014).

    Article  CAS  Google Scholar 

  12. B.C. Jiao, X.D. Zhang, C.C. Wei, J. Sun, Q. Huang, and Y. Zhao, Thin Solid Films 520, 1323 (2011).

    Article  CAS  Google Scholar 

  13. R. Biswal, A. Maldonado, J. Vega-Pérez, D.R. Acosta, and M. De La L. Olvera, Materials 7, 5038 (2014).

    Article  CAS  Google Scholar 

  14. F. Caillaud, A. Smith, and J.F. Baumard, J. Am. Ceram. Soc. 76, 998 (1995).

    Article  Google Scholar 

  15. H. Yuan, L. Zhang, M. Xu, and X. Du, J. Alloys Compd. 651, 571 (2015).

    Article  CAS  Google Scholar 

  16. N.S. Portillo-Vélez, and M. Bizarro, J. Nanomater. 1 (2016).

  17. R. Ashraf, S. Riaz, S.S. Hussain, and S. Naseem, Mater. Today Proc. 2, 5384 (2015).

    Article  Google Scholar 

  18. J. **, A. Hao, G. Wang, X. He, W. Zhang, and Q. Chen, J. Chem. Pharm. 6, 1676 (2014).

    CAS  Google Scholar 

  19. W. Rizwan, K. Young-Soon, and S. Hyung-Shikn, Mater. Trans. 50, 2092 (2009).

    Article  Google Scholar 

  20. S. Edinger, J. Bekacz, M. Richter, R. Hamid, R.A. Wibowo, A. Peić, and T. Dimopoulos, Mater. Sci. 594B, 238 (2015).

    Google Scholar 

  21. S. Jongthammanurak, T. Cheawkul, and M. Witana, Thin Solid Films 571, 114 (2014).

    Article  CAS  Google Scholar 

  22. R. Anandhi, R. Mohan, K. Swaminathan, and K. Ravichandran, Superlattice Microst. 51, 680 (2012).

    Article  CAS  Google Scholar 

  23. D. Beckel, A.B. Hutter, A. Harvey, A. Infortuna, U.P. Muecke, M. Prestat, J.L.M. Rupp, and L.J. Gauckler, J. Power Sources 173, 325 (2007).

    Article  CAS  Google Scholar 

  24. S.R. Ardekani, A.S.R. Aghdam, M. Nazari, A. Bayat, E. Yazdani, and E.A. Saievar-Iranizad, J. Anal. App.l Pyrolysis 141, 1 (2019).

    Google Scholar 

  25. O. Madelung, U. Rössler, M. Schulz, (eds) II–VI and I–VII Compounds; Semimagnetic Compounds. Landolt-Börnstein—Group III Condensed Matter (Numerical Data and Functional Relationships in Science and Technology), Vol. 41B (Springer, Berlin, Heidelberg).

  26. B.D. Cullity, and S.R. Stock, Elements of X-ray Diffraction, 3rd ed., (Upper Saddle River: Prentice Hall, 2001).

    Google Scholar 

  27. J.I. Langford, and A.J.C. Wilson, J. Appl. Cryst. 11, 102 (1978).

    Article  CAS  Google Scholar 

  28. S. Ilicana, Y. Caglara, M. Caglara, and M.F. Yakuphanoglu, Phys. E. 35, 131 (2006).

    Article  Google Scholar 

  29. P. D. File, Joint Committee on Powder Diffraction Standards, Swarthmore, PA, Card No. 36 (2000).

  30. J.L. Vidal, G.A. Torres, M. de la L. Olvera, L. Castañeda, A. Maldonado, and H. Gomez, Sensors. 14, 1 (2013).

    Article  Google Scholar 

  31. Q. Zhang, M. Xu, B. You, Q. Zhang, H. Yuan, and K. Ostrikov, Appl. Sci. 8, 1 (2018).

    Google Scholar 

  32. J. Wang, P. Liu, X. Fu, Z. Li, W. Han, and X. Wang, Langmuir 25, 1218 (2009).

    Article  CAS  Google Scholar 

  33. X. Chen, Z. Wu, D. Liu, and Z. Gao, Nanoscale Res. Lett. 12, 1 (2017).

    Article  Google Scholar 

  34. C. Wang, D. Wu, P. Wang, Y. Ao, J. Hou, and J. Qian, Appl. Surf. Sci. 325, 112 (2015).

    Article  CAS  Google Scholar 

  35. M. Dai, L. **a, S. Song, C. Peng, and A. Lopez-Valdivieso, J. Hazard. Mater. 307, 312 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Thanks are due to A. Palafox Gomez, E. J. Luna Arredondo and A. Tavira for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Gómez-Pozos.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthik, T.V.K., Maldonado, A., Olvera, M.L. et al. Copper-Doped ZnO Thin Films Deposited by Spray Pyrolysis: Effect of Water Content in Starting Solution on Methylene Blue Degradation by Photocatalysis. J. Electron. Mater. 50, 5542–5552 (2021). https://doi.org/10.1007/s11664-021-09088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-021-09088-z

Keywords

Navigation