Log in

Phase Transition, Large Strain and Energy Storage in Ferroelectric (Bi0.5Na0.5)TiO3-BaTiO3 Ceramics Tailored by (Mg1/3Nb2/3)4+ Complex Ions

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Lead-free relaxor-ferroelectric (Mg1/3Nb2/3)4+ complex ions modified (Bi0.5Na0.5)0.94Ba0.06TiO3 (BNBT-xMN) ceramics were fabricated by traditional solid-phase reaction sintering, and the effects of (Mg1/3Nb2/3)4+ complex ions on the structural, ferroelectric, dielectric, energy storage, and strain properties of these ceramics were studied. All of the samples illustrated a single perovskite phase with a pseudo-cubic structure. Electric field-induced polarization and strain hysteresis loops indicated the occurrence of reversible ferroelectric-to-relaxor phase transition, which gave rise to a large strain of 0.49%. (Mg1/3Nb2/3)4+ complex ions greatly influenced the coercive field and remanent polarization of the ceramics; these properties also affected energy storage density of the materials. The optimal energy storage density and efficiency of the ceramics were 0.54 J/cm3 and 38.4%, respectively, when x = 0.04. These results may stem from the electric field-induced transition between the ferroelectric and relaxor-ferroelectric phase of the proposed ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Li, W. Chen, Q. Xu, J. Zhou, X. Gu, and S. Fang, Mater. Chem. Phys. 94, 328 (2005).

    CAS  Google Scholar 

  2. X. Feng and Y. **, Ferroelectrics 231, 121 (1999).

    Google Scholar 

  3. S. Hajra, S. Sahoo, R. Das, and R.N.P. Choudhary, J. Alloys Compd. 750, 507 (2018).

    CAS  Google Scholar 

  4. L.K. Pradhan, R. Pandey, S. Kumar, S. Kumari, and M. Kar, J. Mater. Sci. Mater. Electron. 30, 9547 (2019).

    CAS  Google Scholar 

  5. W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. **e, D. Salamon, Z.G. Ye, and H. Zhang, J. Mater. Chem. C 7, 281 (2019).

    CAS  Google Scholar 

  6. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, and S. Sen, J. Appl. Phys. 125, 054101 (2019).

    Google Scholar 

  7. A. Verma, A.K. Yadav, S. Kumar, and S. Sen, AIP Conference Proceedings 1942, 030024 (2018).

    Google Scholar 

  8. B. Parija, T. Badapanda, S. Panigrahi, and T.P. Sinha, J. Mater. Sci. Mater. Electron. 24, 402 (2013).

    CAS  Google Scholar 

  9. H. Ni, L. Luo, W. Li, Y. Zhu, and H. Luo, J. Alloys Compd. 509, 3958 (2011).

    CAS  Google Scholar 

  10. F. Liu, O. Wahyudi, L. Yiqing, and Y. Li, Ceram. Int. 41, S31 (2015).

    CAS  Google Scholar 

  11. A. Ullah, C.W. Ahn, K.B. Jang, A. Hussain, and I.W. Kim, Ferroelectrics 404, 6 (2010).

    Google Scholar 

  12. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, P. Rajput, V.R. Reddy, R. Jangir, H.K. Poshwal, S.W. Liu, S. Biring, and S. Sen, J. Appl. Phys. 123, 224101 (2018).

    Google Scholar 

  13. C. Wang, T. **a, and X. Lou, Ceram. Int. 44, 22053 (2018).

    CAS  Google Scholar 

  14. T. Badapanda, S. Sahoo, and P. Nayak, IOP Conf. Ser. Mater. Sci. Eng. 178, 012032 (2017).

    Google Scholar 

  15. P. Fan, Y. Zhang, B. **e, Y. Zhu, W. Ma, B. Yang, X. **long, J. **ao, and H. Zhang, Ceram. Int. 44, 3211 (2018).

    CAS  Google Scholar 

  16. S. Pang, L. Yang, J. Qin, H. Qin, H. **e, H. Wang, C. Zhou, and X. Jiwen, Appl. Phys. A 125, 119 (2019).

    Google Scholar 

  17. Q. Wei, M. Zhu, M. Zheng, and Y. Hou, J. Alloys Compd. 782, 611 (2019).

    CAS  Google Scholar 

  18. Y. Pu, L. Zhang, M. Yao, W. Ge, and M. Chen, Mater. Lett. 189, 232 (2017).

    CAS  Google Scholar 

  19. G. Yao, X. Wang, Y. Wu, and L. Li, J. Am. Ceram. Soc. 95, 614 (2011).

    Google Scholar 

  20. H. **e, Y. Zhao, J. Xu, L. Yang, C. Zhou, H. Zhang, X. Zhang, W. Qiu, and H. Wang, J. Alloys Compd. 743, 73 (2018).

    CAS  Google Scholar 

  21. X. Zhou, C. Zhou, Q. Zhou, H. Yang, Z. Cen, J. Cheng, L. Cao, and Q. Fan, J. Electron. Mater. 43, 755 (2014).

    CAS  Google Scholar 

  22. R. Cheng, Z. Xu, R. Chu, J. Hao, J. Du, W. Ji, and G. Li, Ceram. Int. 41, 8119 (2015).

  23. Z. **ong, B. Tang, X. Zhang, C. Yang, and S. Zhang, Ceram. Int. 44, 19058 (2018).

    CAS  Google Scholar 

  24. M.Q. Awan, J. Ahmad, A. Berlie, Q. Sun, R.L. Withers, and Y. Liu, Ceram. Int. 44, 12767 (2018).

    CAS  Google Scholar 

  25. K. Sood, K. Singh, and O.P. Pandey, J. Mater. Sci 47, 4520 (2012).

    CAS  Google Scholar 

  26. J. **ng, Z. Shan, K. Li, J. Bian, X. Lin, W. Wang, and F. Huang, J. Phys. Chem. Solids 69, 23 (2008).

    CAS  Google Scholar 

  27. A. Verma, A.K. Yadav, S. Kumar, V. Srihari, R. Jangir, H.K. Poswal, S. Biring, and S. Sen, J. Alloys Compd. 792, 95 (2019).

    CAS  Google Scholar 

  28. G. Dong, H. Fan, J. Shi, and M. Li, J. Am. Ceram. Soc. 98, 1150 (2015).

    CAS  Google Scholar 

  29. W. Bai, D. Chen, P. Zheng, J. Zhang, F. Wen, B. Shen, J. Zhai, and Z. Ji, J. Alloys Compd. 709, 646 (2017).

    CAS  Google Scholar 

  30. L. Li, J. Zhang, R.-X. Wang, M. Zheng, Y. Hou, H. Zhang, S.-T. Zhang, and M. Zhu, J. Eur. Ceram. Soc. 39, 1827 (2019).

    CAS  Google Scholar 

  31. W. Bai, D. Chen, P. Zheng, B. Shen, J. Zhai, and Z. Ji, Dalton. Trans. 45, 8573 (2016).

    CAS  Google Scholar 

  32. H. Zhang, D.Y. Zheng, S.M. Hu, C. Cheng, G.G. Peng, J. Zhang, and L.L. Li, J. Mater. Sci. Mater. Electron. 28, 67 (2017).

    CAS  Google Scholar 

  33. H. Lidjici, B. Lagoun, M. Berrahal, M. Rguitti, M.A. Hentatti, and H. Khemakhem, J. Alloys Compd. 618, 643 (2015).

    CAS  Google Scholar 

  34. S.N. Seo, J.H. Cho, B.I. Kim, and E.S. Kim, Ceram. Int. 38, S327 (2012).

    CAS  Google Scholar 

  35. W. Bai, L. Wang, X. Zhao, P. Zheng, F. Wen, L. Li, J. Zhai, and Z. Ji, Dalton. Trans. 48, 10160 (2019).

    CAS  Google Scholar 

  36. M. Chandrasekhar and P. Kumar, Ceram. Int. 41, 5574 (2015).

    CAS  Google Scholar 

  37. T. Tani, T. Kimura, and Y. Saito, 17th IEEE International Symposium on the Applications of Ferroelectrics, vol. 3, p. 1 (2008).

  38. J. Hao, B. Shen, J. Zhai, C. Liu, and X. Gao, J. Am. Ceram. Soc. 96, 3133 (2013).

    CAS  Google Scholar 

  39. D.S. Yin, Z.H. Zhao, Y.J. Dai, Z. Zhao, X.W. Zhang, and S.H. Wang, J. Am. Ceram. Soc. 99, 2354 (2013).

    Google Scholar 

  40. C. Zhou and X. Liu, Piezoelectr. Acoustooptics 30, 480 (2008).

  41. V. Westphal, W. Kleemann, and M.D. Glinchuk, Phys. Rev. Lett. 68, 847 (1992).

    CAS  Google Scholar 

  42. G. Viola, H. Ning, X. Wei, M. Deluca, A. Adomkevicius, J. Khaliq, M. John Reece, and H. Yan, J. Appl. Phys. 114, 014107 (2013).

    Google Scholar 

  43. Q. Xu, H. Liu, Z. Song, X. Huang, A. Ullah, L. Zhang, J. **e, H. Hao, M. Cao, and Z. Yao, J. Mater. Sci. Mater. Electron. 27, 322 (2016).

    CAS  Google Scholar 

  44. C. Yang, E. Sun, B. Yang, and W. Cao, J. Phys. D Appl. 51, 415303 (2018).

    Google Scholar 

  45. J. Hao, B. Shen, J. Zhai, and H. Chen, J. Appl. Phys. 115, 034101 (2014).

    Google Scholar 

  46. A. Hussain, J.U. Rahman, A. Zaman, R.A. Malik, J.S. Kim, T.K. Song, W.J. Kim, and M.H. Kim, Mater. Chem. Phys. 143, 1282 (2014).

    CAS  Google Scholar 

  47. A. Chauhan, S. Patel, R. Vaish, and C.R. Bowen, Materials 8, 8009 (2015).

    Google Scholar 

  48. Y. Li, W. Cao, Q. Li, Q. Yan, J. Gao, F. Zhuo, X. **, Y. Zhang, and X. Chu, Appl. Phys. Lett. 104, 729 (2014).

    Google Scholar 

  49. C. Wang, X. Lou, T. **a, and S. Tian, Ceram. Int. 43, 9253 (2017).

    CAS  Google Scholar 

  50. W. Jo, S. Schaab, E. Sapper, L.A. Schmitt, H.J. Kleebe, A.J. Bell, and J. Rödel, J. Appl. Phys. 110, 074106 (2011).

    Google Scholar 

  51. H.-S. Han, W. Jo, J. Rödel, I.-K. Hong, W.-P. Tai, and J.-S. Lee, J. Phys. Condens. Matter. 24, 365901 (2012).

    Google Scholar 

  52. J. Zang, W. Jo, H. Zhang, and J. Rödel, J. Eur. Ceram. Soc. 34, 37 (2014).

    CAS  Google Scholar 

  53. K. Tong, C. Zhou, J. Wang, Q. Li, L. Yang, J. Xu, W. Zeng, G. Chen, C. Yuan, and G. Rao, Ceram. Int. 43, 3734 (2017).

    CAS  Google Scholar 

  54. S. Pattipaka, A.R. James, and P. Dobbidi, J. Alloys Compd. 765, 1195 (2018).

    CAS  Google Scholar 

  55. G.A. Smolensky and A.I. Agranovus, Sov. Phys. Solid State 6, 429 (1995).

    Google Scholar 

  56. S. Nomura and K. Uchino, Ferroelectr. Lett. 44, 55 (1982).

  57. C.C. **, F.F. Wang, L.L. Wei, J. Tang, Y. Li, Q.R. Yao, C.Y. Tian, and W.Z. Shi, J. Alloys Compd. 585, 185 (2014).

    CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Nature Science Foundation of China (11664006, 61741105), Guangxi Nature Science Foundation (2016GXNSFAA380069) and Guangxi Key Laboratory of Information Materials (161001-Z, 171009-Z).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiwen Xu or Ling Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Zhao, Y., Xu, J. et al. Phase Transition, Large Strain and Energy Storage in Ferroelectric (Bi0.5Na0.5)TiO3-BaTiO3 Ceramics Tailored by (Mg1/3Nb2/3)4+ Complex Ions. J. Electron. Mater. 49, 1131–1141 (2020). https://doi.org/10.1007/s11664-019-07770-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-019-07770-x

Keywords

Navigation