Log in

Enhanced ferroelectricity in relaxor \(\hbox {0.7BiFeO}_{{3}}{-}0.3(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})\hbox {TiO}_{{3}}\) ceramics using ball milling technique

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

\(\hbox {0.7BiFeO}_{{3}}{-}0.3(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})\hbox {TiO}_{{3}}\) (BF–BCT) ceramics were synthesized with a conventional solid-state reaction method. The electrical properties of the BF–BCT ceramics depend on the milling time via a planetary ball-milling technique. The results show that the sample prepared by milling for 40 h possesses a rather large remanent polarization of \(52 \,\upmu \hbox {C}/\hbox {cm}^{2}\) and this value is superior to that of Non-Pb BF-based ceramics at room temperature. Moreover, the values of remanent polarization were confirmed by a PUND measurement to eliminate the contribution of leakage current. We attributed the large remanent polarization to the decrease in oxygen vacancies confirmed by X-ray photoelectron spectroscopy results. Moreover, the BF–BCT ceramics exhibit the dielectric relaxation process caused by the diffusion of oxygen vacancies inside ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13–20 (2007)

    CAS  Google Scholar 

  2. W. Eerenstein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    CAS  Google Scholar 

  3. J. Wu, Z. Fan, D. **ao, J. Zhu, J. Wang, Multiferroic bismuth ferrite-based materials for multifunctional applications: ceramic bulks, thin films and nanostructures. Prog. Mater. Sci. 84, 335–402 (2016)

    CAS  Google Scholar 

  4. J.K. Kim, S.S. Kim, W.-J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped \(\text{BiFeO}_{{3}}\) thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    Google Scholar 

  5. G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21, 2463–2485 (2009)

    CAS  Google Scholar 

  6. Y.F. Qin, J. Yang, P. **ong, W.J. Huang, J.Y. Song, L.H. Yin, P. Tong, X.B. Zhu, Y.P. Sun, The effects of quenching on electrical properties, and leakage behaviors of \(\text{0.67BiFeO}_{{3}}\)-\(\text{0.33BaTiO}_{{3}}\) solid solutions. J. Mater. Sci.: Mater. Electron. 29, 7311–7317 (2018)

    CAS  Google Scholar 

  7. M.J. Tian, L. Zhou, X. Zuo, Q.J. Zheng, L.L. LuO, N. Jiang, D.M. Lin, Improved ferroelectricity and ferromagnetism of Eu-modified \(\text{BiFeO}_{{3}}\)-\(\text{BaTiO}_{{3}}\) lead-free multiferroic ceramics. J. Mater. Sci.: Mater. Electron. 26, 8840–8847 (2015)

    CAS  Google Scholar 

  8. A. Hussain, X. Xu, G. Yuan, Y. Wang, Y. Yang, J. Yin, J. Liu, Z. Liu, The development of \(\text{BiFeO}_{{3}}\)-based ceramics. Chin. Sci. Bull. 59, 5161–5169 (2014)

    CAS  Google Scholar 

  9. Y.P. Wang, L. Zhou, M.F. Zhang, X.Y. Chen, J.M. Liu, Z.G. Liu, Room-temperature saturated ferroelectric polarization in \(\text{BiFeO}_{{3}}\) ceramics synthesized by rapid liquid phase sintering. Appl. Phys. Lett. 84, 1731–1733 (2004)

    CAS  Google Scholar 

  10. Z. Dai, Y. Akishige, Electrical properties of \(\text{BiFeO}_{{3}}\)-\(\text{BaTiO}_{{3}}\) ceramics fabricated by mechanochemical synthesis and spark plasma sintering. Mater. Lett. 88, 36–39 (2012)

    CAS  Google Scholar 

  11. M.H. Lee, D.J. Kim, J.S. Park, S.W. Kim, T.K. Song, M.H. Kim, W.J. Kim, D. Do, I.K. Jeong, High-performance lead-free piezoceramics with high curie temperatures. Adv. Mater. 27, 6976–6982 (2015)

    CAS  Google Scholar 

  12. Y. Shao, F. Song, B. Liu, W. Li, L. Li, C. Jiang, Observation of ceramic cracking during quenching. J. Am. Ceram. Soc. 100, 520–523 (2017)

    CAS  Google Scholar 

  13. C. Sangsubun, Fabrication and characterization of bismuth sodium titanate ceramics by high-energy ball milling technique. Ceram. Int. 41, S180–S184 (2015)

    CAS  Google Scholar 

  14. A. Banerjee, A. Das, D. Das, A. Saha, S. Sarkar, Mössbauer study of Fe-doped \(\text{BaTiO}_{{3}}\) of different grain sizes induced by ball mill technique. J. Magn. Magn. Mater. 449, 180–184 (2018)

    CAS  Google Scholar 

  15. S.K.S. Parashar, R.N.P. Choudhary, B.S. Murty, Ferroelectric phase transition in \(\text{Pb}_{0.92}\text{Gd}_{0.08}\)(\(\text{Zr}_{0.53}\text{Ti}_{0.47})_{0.98}\text{O}_{{3}}\) nanoceramic synthesized by high-energy ball milling. J. Appl. Phys. 94, 6091–6096 (2003)

    CAS  Google Scholar 

  16. X.N. Zhu, M.S. Rahman, Y.J. Wu, X.Q. Liu, Y.H. Huang, G. Liu, R. Guo, X.M. Chen, A.S. Bhalla, Enhanced ferroelectricity, piezoelectricity and ferromagnetism in (\(\text{Ba}_{0.75}\text{Ca}_{0.25})\text{TiO}_{{3}}\) modified \(\text{BiFeO}_{{3}}\) multiferroic ceramics. J. Alloys Compd. 658, 973–980 (2016)

    CAS  Google Scholar 

  17. W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103, 257602 (2009)

    Google Scholar 

  18. N. Liu, R. Liang, Z. Liu, Z. Zhou, C. Xu, G. Wang, X. Dong, Large remanent polarization and enhanced magnetic properties in non-quenched Bi(Fe, Ga)\(\text{O}_{{3}}\)-(Ba, Ca)(Zr, Ti)\(\text{O}_{{3}}\) multiferroic ceramics. Appl. Phys. Lett. 110, 112902 (2017)

    Google Scholar 

  19. V.V. Shvartsman, W. Kleemann, R. Haumont, J. Kreisel, Large bulk polarization and regular domain structure in ceramic \(\text{BiFeO}_{{3}}\). Appl. Phys. Lett. 90, 172115 (2007)

    Google Scholar 

  20. Y. Sudo, M. Hagiwara, S. Fujihara, Grain size effect on electrical properties of Mn-modified \(\text{0.67BiFeO}_{{3}}\)\(\text{0.33BaTiO}_{{3}}\) lead-free piezoelectric ceramics. Ceram. Int. 42, 8206–8211 (2016)

    CAS  Google Scholar 

  21. S. Huo, S. Yuan, Z. Tian, C. Wang, Y. Qiu, C. Randall, Grain size effects on the ferroelectric and piezoelectric properties of \(\text{Na}_{0.5}\text{K}_{0.5}\text{NbO}_{{3}}\) ceramics prepared by pechini method. J. Am. Ceram. Soc. 95, 1383–1387 (2012)

    CAS  Google Scholar 

  22. D.S. Kim, C.I. Cheon, S.S. Lee, J.S. Kim, Effect of cooling rate on phase transitions and ferroelectric properties in \(\text{0.75BiFeO}_{{3}}\)-\(\text{0.25BaTiO}_{{3}}\) ceramics. Appl. Phys. Lett. 109, 202902 (2016)

    Google Scholar 

  23. D. Alikin, A. Turygin, A. Kholkin, V. Shur, Ferroelectric domain structure and local piezoelectric properties of lead-free (\(\text{Ka}_{0.5}\text{Na}_{0.5})\text{NbO}_{{3}}\) and \(\text{BiFeO}_{{3}}\)-based piezoelectric ceramics. Materials 10, 47 (2017)

    Google Scholar 

  24. Q. Li, J. Wei, T. Tu, J. Cheng, J. Chen, Remarkable piezoelectricity and stable high-temperature dielectric properties of quenched \(\text{BiFeO}_{{3}}\)-\(\text{BaTiO}_{{3}}\) ceramics. J. Am. Ceram. Soc. 100, 5573–5583 (2017)

    CAS  Google Scholar 

  25. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Direct evidence for multiferroic magnetoelectric coupling in \(\text{0.9BiFeO }_{{3}}\)-\(\text{0.1BaTiO }_{{3}}\). Phys. Rev. Lett. 101, 247602 (2008)

    Google Scholar 

  26. D.P. Song, X.Z. Zuo, B. Yuan, X.W. Tang, W.H. Song, J. Yang, X.B. Zhu, Y.P. Sun, Enhanced remnant polarization in ferroelectric \(\text{Bi}_{{6}}\text{Fe}_{{2}}\text{Ti}_{{3}}\text{O}_{{18}}\) thin films. CrystEngComm. 17, 1609–1614 (2015)

    CAS  Google Scholar 

  27. S.F. Liu, Y.J. Wu, J. Li, X.M. Chen, Effects of oxygen vacancies on dielectric, electrical, and ferroelectric properties of \(\text{Ba}_{{4}}\text{Nd}_{{2}}\text{Fe}_{{2}}\text{Nb}_{{8}}\text{O}_{{30}}\) ceramics. Appl. Phys. Lett. 104, 082912 (2014)

    Google Scholar 

  28. Y. Wang, Q.H. Jiang, H.C. He, C.W. Nan, Multiferroic \(\text{BiFeO}_{{3}}\) thin films prepared via a simple sol-gel method. Appl. Phys. Lett. 88, 142503 (2006)

    Google Scholar 

  29. Z. **ao, X. Li, X. Dong, J. Tang, C. Wang, T. Zhang, S. Li, L.B. Kong, Sintering and electrical properties of commercial PZT powders modified through mechanochemical activation. J. Mater. Sci. 53, 13769–13778 (2008)

    Google Scholar 

  30. R.D. Levi, Y. Tsur, The effect of oxygen vacancies in the early stages of \(\text{BaTiO}_{{3}}\) nanopowder sintering. Adv. Mater. 17, 1606–1608 (2005)

    CAS  Google Scholar 

  31. I. Reimanis, H.J. Kleebe, A review on the sintering and microstructure development of transparent spinel (\(\text{MgAl}_{{2}}\text{O}_{{4}}\)). J. Am. Ceram. Soc. 92, 1472–1480 (2009)

    CAS  Google Scholar 

  32. G. Arlt, D. Hennings, G.D. With, Dielectric properties of fine-grained barium titanate ceramics. J. Appl. Phys. 58, 1619–1625 (1985)

    CAS  Google Scholar 

  33. A.S. Shaikh, R.W. Vest, G.M. Vest, Dielectric properties of ultrafine grained \(\text{ BaTiO }_{{3}}\). IEEE Trans. Ultrason. Ferroelectr. 136, 407–412 (1989)

    Google Scholar 

  34. B. Yuan, J. Yang, J. Chen, X.Z. Zuo, L.H. Yin, X.W. Tang, X.B. Zhu, J.M. Dai, W.H. Song, Y.P. Sun, Magnetic and dielectric properties of aurivillius phase \(\text{Bi}_{{6}}\text{Fe}_{{2}}\text{Ti}_{3 - 2x}\text{Nb}_{{x}}\text{Co}_{{x}}\text{O}_{{18}}\) (0 \(\le\) x \(\le\) 0.4). Appl. Phys. Lett. 104, 062413 (2014)

    Google Scholar 

  35. K. Ishikawa, K. Yoshikawa, N. Okada, Size effect on the ferroelectric phase transition in \(\text{ PbTiO }_{{3}}\) ultrafine particles. Phys. Rev. B 37, 5852–5855 (1988)

    CAS  Google Scholar 

  36. H. Singh, A. Kumar, K.L. Yadav, Structural, dielectric, magnetic, magnetodielectric and impedance spectroscopic studies of multiferroic \(\text{BiFeO}_{{3}}\)-\(\text{BaTiO}_{{3}}\) ceramics. Mat. Sci. Eng. B 176, 540–547 (2011)

    CAS  Google Scholar 

  37. W. Bai, G. Chen, J.Y. Zhu, J. Yang, T. Lin, X.J. Meng, X.D. Tang, C.G. Duan, J.H. Chu, Dielectric responses and scaling behaviors in Aurivillius \(\text{Bi}_{{6}}\text{Ti}_{{3}}\text{Fe}_{{2}}\text{O}_{{18}}\) multiferroic thin films. Appl. Phys. Lett. 100, 082902 (2012)

    Google Scholar 

  38. R. Schmidt, W. Eerenstein, T. Winiecki, F.D. Morrison, P.A. Midgley, Impedance spectroscopy of epitaxial multiferroic thin films. Phys. Rev. B 75, 245111 (2007)

    Google Scholar 

  39. S.T. Dadami, S. Matteppanavar, S.I.S. Rayaprol, S.K. Deshpande, M.V. Murugendrappa, B. Angadi, Impedance spectroscopy studies on \(\text{PbFe}_{0.5}\text{Nb}_{0.5}\text{O}_{{3}}\)-\(\text{BiFeO}_{{3}}\) multiferroic solid solution. Ceram. Int. 243, 16684–16692 (2017)

    Google Scholar 

  40. M.M. Kumar, A. Srinivas, S.V. Suryanarayana, Structure property relations in \(\text{BiFeO}_{{3}}\)/\(\text{BaTiO}_{{3}}\) solid solutions. J. Appl. Phys. 87, 855–862 (2000)

    CAS  Google Scholar 

  41. Q. Ke, X. Lou, Y. Wang, J. Wang, Oxygen-vacancy-related relaxation and scaling behaviors of \(\text{Bi}_{0.9}\text{La}_{0.1}\text{Fe}_{0.98}\text{Mg}_{0.02}\text{O}_{3}\) ferroelectric thin films. Phys. Rev. B 82, 024102 (2010)

    Google Scholar 

  42. A. Srivastava, A. Garg, F.D. Morrison, Impedance spectroscopy studies on polycrystalline \(\text{BiFeO}_{{3}}\) thin films on Pt/Si substrates. J. Appl. Phys. 105, 054103 (2009)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (Grant No. 2017YFA0403502), the Joint Funds of the National Natural Science Foundation of China and the Chinese Academy of Sciences’ Large-Scale Scientific Facility (Grant No. U1832115), and Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-SLH015).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shu, M., Huang, W., Qin, Y. et al. Enhanced ferroelectricity in relaxor \(\hbox {0.7BiFeO}_{{3}}{-}0.3(\hbox {Ba}_{0.85}\hbox {Ca}_{0.15})\hbox {TiO}_{{3}}\) ceramics using ball milling technique. J Mater Sci: Mater Electron 30, 20221–20228 (2019). https://doi.org/10.1007/s10854-019-02406-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02406-6

Navigation