Log in

Electronic and Structural Properties of Phase-Pure Magnetite Thin Films: Effect of Preferred Orientation

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Materials in the form of thin films are getting worldwide attention because of their rapid development in the electronics industry. The demand is not only to prepare thin films using low-cost methods but also to induce tunable electronic properties (i.e., ferroelectricity, dielectric/impedance behavior, etc.) at room temperature. Kee** in view today’s demand for electronic materials, iron oxide thin films have been prepared using a low-cost sol–gel method with variation in the sol concentration in the range of 0.2–2.0 mM. Spin-coated films have been annealed at 300°C for 60 and 120 min in the presence of a magnetic field. The magnetite (Fe3O4) phase was observed at 1.4 mM, with preferred orientation along the (220) plane, under as-deposited and annealed conditions. The rest of the concentration range we studied results in the inclusion of small traces of maghemite (γ-Fe2O3) along with magnetite under all the preparation conditions. However, such inclusions result in the shift of preferred orientation from the (220) to the (400) plane of the magnetite (Fe3O4) phase. Formation of Fe3O4 phase has been confirmed using the Verwey transition at ∼ 124.8 K along with the appearance of a Raman A1g band at 667 cm−1. A high dielectric constant (∼ 80.23) and low tangent loss (∼ 0.00239) at log f = 5.0 were obtained at room temperature for 1.4 mM-based thin films. Such behavior may have been observed because of the high grain boundary resistance (5.5 × 104 Ω) and high grain boundary density (0.9939) at a sol concentration of 1.4 mM. An increase in dielectric constant and tangent loss was observed with the increase in temperature from 30 to 210°C. An activation energy of 2.007 eV was observed for the 1.4 mM-based thin films. The conductivity obeys Jonscher’s power law and has been associated with the overlap** large polaron tunneling model. Room-temperature ferroelectricity was observed for iron oxide thin films with maximum polarization (Pmax ∼ 14.74 μC/cm2) at 1.4 mM sol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Balzar, P.A. Ramakrishnan, P. Spagnol, S. Mani, A.M. Hermann, and M.A. Matin, Jpn. J. Appl. Phys. 41, 6628 (2002).

    Article  CAS  Google Scholar 

  2. Z.M. Dang, J.K. Yuan, J.W. Zha, T. Zhou, S.T. Li, and G.H. Hu, Prog. Mater Sci. 54, 660 (2012).

    Article  Google Scholar 

  3. C.H. Zhang, Q. Chi, J. Dong, Y. Cui, X. Wang, L. Liu, and Q. Lei, Sci. Rep. 6, 33508 (2016).

    Article  Google Scholar 

  4. W.H. Yang, S.H. Yu, R. Sun, and D.X. Du, Acta Mater. 59, 5593 (2011).

    Article  CAS  Google Scholar 

  5. Q. Chi, J. Sun, C. Zhang, G. Liu, J. Lin, Y. Wang, X. Wang, and Q. Lei, J. Mater. Chem. C 2, 172 (2014).

    Article  CAS  Google Scholar 

  6. B.C. Luo, X.H. Wang, Y.P. Wang, and L.T. Li, J. Mater. Chem. A 2, 510 (2014).

    Article  CAS  Google Scholar 

  7. Z.M. Dang, M.S. Zheng, and J.W. Zha, Small 12, 1688 (2016).

    Article  CAS  Google Scholar 

  8. L. Wang and Z.M. Dang, Appl. Phys. Lett. 87, 042903 (2005).

    Article  Google Scholar 

  9. Q. Chi, T. Ma, J. Dong, Y. Cui, Y. Zhang, C. Zhang, S. Xu, X. Wang, and Q. Lei, Sci. Rep. 7, 3072 (2017).

    Article  Google Scholar 

  10. M.T. Lee, J.K. Chang, Y.T. Hsieh, and W.T. Tsai, J. Power Sour. 185, 1550 (2008).

    Article  CAS  Google Scholar 

  11. E. Mitchell, R.K. Gupta, K.M. Darkwa, D. Kumar, K. Ramasamy, B.K. Gupta, and P. Kahol, New J. Chem. 38, 4344 (2014).

    Article  CAS  Google Scholar 

  12. S. Riaz, A. Akbar, and S. Naseem, IEEE Trans. Magn. 50, 2300204 (2014).

    Google Scholar 

  13. S. Riaz, R. Ashraf, A. Akbar, and S. Naseem, IEEE Trans. Magn. 50, 2301805 (2014).

    Google Scholar 

  14. A. Akbar, S. Riaz, M. Bashir, and S. Naseem, IEEE Trans. Magn. 50, 2200804 (2014).

    Google Scholar 

  15. A. Akbar, S. Riaz, R. Ashraf, and S. Naseem, J. Sol-Gel. Sci. Technol. 74, 320 (2015).

    Article  CAS  Google Scholar 

  16. S.S. Fareed, N. Mythili, G. Vijayaprasath, R. Murugan, H.M. Mohaideen, R. Chandramohan, and G. Ravi, J. Mater. Sci.: Mater. Electron. 28, 9450 (2017).

    CAS  Google Scholar 

  17. N.J. Tang, W. Zhon, H.Y. Jiang, X.L. Wu, W. Liu, and Y.W. Du, J. Magn. Magn. Mater. 282, 92 (2004).

    Article  CAS  Google Scholar 

  18. A.E. Eken and M. Ozenbas, J. Sol-Gel. Sci. Technol. 50, 321 (2009).

    Article  CAS  Google Scholar 

  19. K. Yamauchi, T. Fukuschima, and S. Picozzi, Phys. Rev. B 79, 212404 (2009).

    Article  Google Scholar 

  20. J. Tang, M. Myers, K.A. Bosnick, and L.E. Brus, J. Phys. Chem. B 107, 7501 (2003).

    Article  CAS  Google Scholar 

  21. G. Gnanaprakash, S. Ayyappan, T. Jayakumar, J. Philip, and B. Raj, Nanotechnology 17, 5851 (2006).

    Article  CAS  Google Scholar 

  22. J.P. Cruz, E. Joanni, P.M. Vilarinho, and A.L. Kholkin, J. Appl. Phys. 108, 114106 (2010).

    Article  Google Scholar 

  23. B.D. Cullity, Elements of x-ray diffraction (Boston: Addison-Wesley Publishing Company, 1956).

    Google Scholar 

  24. S. Riaz, F. Majid, S.M.H. Shah, and S. Naseem, Indian J. Phys. 88, 1037 (2014).

    Article  CAS  Google Scholar 

  25. I. Kim, Y. Kim, G. Nam, D. Kim, M. Park, H. Kim, W. Lee, and J.Y. Leem, J. Korean Phys. Soc. 65, 480 (2014).

    Article  CAS  Google Scholar 

  26. M. Arora, R.A. Zargar, and S.D. Khan, Int. J. Spectrosc. 2015, 431678 (2015).

    Article  Google Scholar 

  27. J.A. Cuenca, K. Bugler, S. Taylor, D. Morgan, P. Williams, J. Bauer, and A. Porch, J. Phys.: Condens. Matter 28, 106002 (2016).

    Google Scholar 

  28. H. Yanagihara, M. Myoka, D. Isaka, T. Niizeki, K. Mibu, and E. Kita, J. Phys. D Appl. Phys. 46, 175004 (2013).

    Article  Google Scholar 

  29. X. Liu, H. Lu, M. He, L. Wang, H. Shi, K. **, C. Wang, and G. Yang, J. Phys. D Appl. Phys. 47, 105004 (2014).

    Article  Google Scholar 

  30. D. Gilks, L. Lari, K. Matsuzaki, H. Hosono, T. Susaki, and V.K. Lazarov, J. Appl. Phys. 115, 17C107 (2014).

    Article  Google Scholar 

  31. E. Barsoukov and J.R. Macdonald, Impedance spectroscopy theory, experiment, and applications (New Jersey: John Wiley & Sons Inc., Publication, 2005).

    Book  Google Scholar 

  32. M. Sahni, N. Kumar, S. Singh, A. Jha, S. Chaubey, M. Kumar, and M.K. Sharma, J. Mater. Sci.: Mater. Electron. 25, 2199 (2014).

    CAS  Google Scholar 

  33. S. Riaz, S.M.H. Shah, A. Akbar, S. Atiq, and S. Naseem, J. Sol-Gel. Sci. Technol. 74, 329 (2015).

    Article  CAS  Google Scholar 

  34. F. Majid, S. Riaz, and S. Naseem, J. Sol-Gel. Sci. Technol. 74, 310 (2015).

    Article  CAS  Google Scholar 

  35. M. Azam, S. Riaz, A. Akbar, and S. Naseem, J. Sol-Gel. Sci. Technol. 74, 340 (2015).

    Article  CAS  Google Scholar 

  36. S. Ni, S. Lin, Q. Pan, F. Yang, K. Huang, and D. He, J. Phys. D Appl. Phys. 42, 055004 (2009).

    Article  Google Scholar 

  37. J.S. Horwitz, W. Chang, W. Kim, and S.B. Qadri, J. Electroceram. 4, 357 (2000).

    Article  CAS  Google Scholar 

  38. J. Song, L. Han, T. Liu, Q. Feng, Z. Luo, and A. Lu, J. Mater. Sci.: Mater. Electro. 29, 5934 (2018). https://doi.org/10.1007/s10854-018-8566-6.

    Article  CAS  Google Scholar 

  39. Q. Nian, M. Callahan, D. Look, H. Efstathiadis, J. Bailey, and G.J. Cheng, APL Mater. 3, 06280 (2015).

    Article  Google Scholar 

  40. J. Rout and R.N.P. Choudhary, J. Mater. Sci.: Mater. Electron. 26, 2905 (2015).

    CAS  Google Scholar 

  41. N. Kumari, V. Kumarn, and S.K. Singh, Ceram. Int. 40, 12199 (2014).

    Article  CAS  Google Scholar 

  42. V.D. Nithya and R.K. Selvan, Phys. B 406, 24 (2011).

    Article  CAS  Google Scholar 

  43. J. Kolte, P.H. Salame, A.S. Daryapurkar, and P. Gopalan, AIP Adv. 5, 097164 (2015).

    Article  Google Scholar 

  44. A. Manohar and C. Krishnamoorthi, Mater. Chem. Phys. 192, 235 (2017).

    Article  CAS  Google Scholar 

  45. S.H. Song, Q.S. Zhu, L.Q. Weng, and V.R. Mudinepalli, J. Eur. Ceram. Soc. 35, 131 (2015).

    Article  CAS  Google Scholar 

  46. S.K. Singh, K. Maruyam, and H. Ishiwara, Appl. Phys. Lett. 91, 112913 (2007).

    Article  Google Scholar 

  47. P. Barone, K. Yamauchi, and S. Picozzi, Phys. Rev. B 92, 014116 (2015).

    Article  Google Scholar 

  48. U.G. Jong, C.J. Yu, Y.S. Park, and C.S. Ri, Phys. Lett. A 380, 3302 (2016).

    Article  CAS  Google Scholar 

  49. B. Arndt, R. Bliem, O. Gamb, J.E.S. van der Hoeven, H. Noei, U. Diebold, G.S. Parkinson, and A. Stierle, Surf. Sci. 653, 76 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saira Riaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imran, M., Akbar, A., Riaz, S. et al. Electronic and Structural Properties of Phase-Pure Magnetite Thin Films: Effect of Preferred Orientation. J. Electron. Mater. 47, 6613–6624 (2018). https://doi.org/10.1007/s11664-018-6553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-018-6553-6

Keywords

Navigation