Log in

Characterization of nanostructured magnetite thin films produced by sol–gel processing

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline films of magnetite have been prepared by a novel sol–gel route in which, a solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. Coating solution showed Newtonian behaviour and viscosity was found as 0.0215 Pa.s. Annealing temperature was selected between 291 and 350 °C by DTA analysis in order to obtain magnetite films. In-plane grazing angle XRD and TEM studies showed that magnetite phase was present upon annealing the films at 300 °C. The films had crack free surfaces and their thicknesses varied between ~10 and 200 nm. UV–Vis spectrum results showed that transmittance of the films increases with decreasing annealing temperature and increasing spinning rate. Up to 96% transmittance was observed between the wavelengths of 900–1,100 nm. Vibrating sample magnetometer measurements indicated that magnetite thin films showed ferromagnetic behavior and the saturation magnetization value was found as ~35 emu/cm3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Desai JD, Pathan HM, Min S, Jung K, Joo O (2005) Semicond Sci Technol 20:705. doi:10.1088/0268-1242/20/8/009

    Article  ADS  CAS  Google Scholar 

  2. Tepper T, Ross CA (2004) IEEE T Magn 40:1685. doi:10.1109/TMAG.2004.827215

    Article  ADS  CAS  Google Scholar 

  3. Chauhan P, Annapoorni S, Trikha SK (1998) Bull Mater Sci 21:381. doi:10.1007/BF02744922

    Article  CAS  Google Scholar 

  4. Zhang G, Fan C, Pan L, Wang F, Wu P, Qiu H, Gu Y, Zhang Y (2005) J Magn Magn Mater 293:737. doi:10.1016/j.jmmm.2004.11.529

    Article  ADS  CAS  Google Scholar 

  5. Il**as A, Brucas R, Stankus V, Dudonis J (2005) Mater Sci Eng C 25:590. doi:10.1016/j.msec.2005.06.031

    Article  Google Scholar 

  6. Wang Q, Shi J, Chen L, Yan D (2003) Mater Sci Forum 569:423–425

    Google Scholar 

  7. Mi WB, Shen JJ, Jiang EY, Bai HL (2007) Acta Mater 55:1919. doi:10.1016/j.actamat.2006.10.050

    Article  CAS  Google Scholar 

  8. Tang XL, Zhang HW, Su H, Zhong ZY (2005) J Vac Sci Technol B 23:2314. doi:10.1116/1.2101635

    Article  CAS  Google Scholar 

  9. Lu ZL, Zou WQ, Lv LY, Liu XC, Li SD, Zhu JM, Zhang FM, Du YW (2006) J Phys Chem B 110:23817. doi:10.1021/jp0608325

    Article  PubMed  CAS  Google Scholar 

  10. Eerenstein W, Kalev L, Niesen L, Palstra TTM, Hibma T (2003) J Magn Magn Mater 258–259:73. doi:10.1016/S0304-8853(02)01109-5

    Article  Google Scholar 

  11. Reisinger D, Majewski P, Opel M, Alff L, Gross R (2004) Appl Phys Lett 85:4980. doi:10.1063/1.1808497

    Article  ADS  CAS  Google Scholar 

  12. Peng Y, Park C, Laughlin DE (2003) J Appl Phys 93:7957. doi:10.1063/1.1556252

    Article  ADS  CAS  Google Scholar 

  13. Kim YK, Oliveria M (1994) J Appl Phys 75:431. doi:10.1063/1.355869

    Article  ADS  CAS  Google Scholar 

  14. Margulies DT, Parker FT, Spada FE, Goldman RS, Li J, Sinclair R, Berkowitz AE (1996) Phys Rev B 53:9175. doi:10.1103/PhysRevB.53.9175

    Article  ADS  CAS  Google Scholar 

  15. Furubayashi T (2004) J Magn Magn Mater e781:272–276. doi:10.1016/j.jmmm.2003.12.1058

    Google Scholar 

  16. Zhu H, Yang D, Zhu L (2007) Surf Coat Tech 201:5870. doi:10.1016/j.surfcoat.2006.10.037

    Article  CAS  Google Scholar 

  17. Nedkov I, Merodiiska T, Kolev S, Krezhov K, Niarchos D, Moraitakis E, Kusano Y, Takada J (2002) Monatsh Chem 133:823. doi:10.1007/s007060200054

    CAS  Google Scholar 

  18. Oh CY, Oh JH, Ko T (2002) IEEE T Magn 38:3018. doi:10.1109/TMAG.2002.802121

    Article  ADS  CAS  Google Scholar 

  19. Paramês ML, Mariano J, Rogalski MS et al (2005) Mater Sci Eng B 118:246. doi:10.1016/j.mseb.2004.12.037

    Article  Google Scholar 

  20. Tang NJ, Zhong W, Jiang HY et al (2004) J Magn Magn Mater 282:92. doi:10.1016/j.jmmm.2004.04.022

    Article  ADS  CAS  Google Scholar 

  21. Tanaka K, Yoko T, Atarashi M, Kamiya K (1989) J Mater Sci Lett 8:83. doi:10.1007/BF00720260

    Article  CAS  Google Scholar 

  22. Chang HSW, Chiou C-C, Chen Y-W, Sheen SR (1997) J Solid State Chem 128:87. doi:10.1006/jssc.1996.7159

    Article  ADS  CAS  Google Scholar 

  23. Malchenko SN, Goroshko NN, Baikov MV, Chudakov VA, Ermolenko VI (1993) Thin Solid Films 227:128. doi:10.1016/0040-6090(93)90029-O

    Article  ADS  Google Scholar 

  24. Sedlář M, Matĕjec V (1994) J Sol–Gel Sci Technol 2:587. doi:10.1007/BF00486314

    Article  Google Scholar 

  25. Hashimoto T, Yamada T, Yoko T (1996) J Appl Phys 80:3184. doi:10.1063/1.363258

    Article  ADS  CAS  Google Scholar 

  26. Hashimoto T, Yoko T (1996) Mater Trans 37:435

    CAS  Google Scholar 

  27. Karakuscu A (2006) Characterization of maghemite thin films prepared by sol–gel processing. M.Sc. Thesis, Middle east technical university, Ankara, Turkey

  28. da Costa GM, De Grave E, de Bakker PMA, Vandenberghe RE (1994) J Solid State Chem 113:405. doi:10.1006/jssc.1994.1388

    Article  ADS  Google Scholar 

  29. Karakuscu A, Ozenbas M (2008) J Nanosci Nanotechnol 8:901. doi:10.1166/jnn.2008.D027

    Article  PubMed  CAS  Google Scholar 

  30. Gong GQ, Gupta A, **ao G, Qian W, Dravid VP (1997) Phys Rev B 56:5096. doi:10.1103/PhysRevB.56.5096

    Article  ADS  CAS  Google Scholar 

  31. Liu H, Jiang EY, Bai HL et al (2003) Appl Phys Lett 83:3531. doi:10.1063/1.1622440

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Middle East Technical University Research Fund through the project BAP-2006-07-02-00.01. DTA, viscosity, AFM and FESEM measurements were conducted at the Central Laboratory of Middle East Technical University. The authors would like to express their sincere thanks to Dr. Suleyman Tari (IYTE) for VSM work and Dr. Ozgur Duygulu (TUBITAK) for TEM work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Macit Ozenbas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eken, A.E., Ozenbas, M. Characterization of nanostructured magnetite thin films produced by sol–gel processing. J Sol-Gel Sci Technol 50, 321–327 (2009). https://doi.org/10.1007/s10971-009-1971-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-009-1971-9

Keywords

Navigation