Log in

Simulation on scrap melting behavior and carbon diffusion under natural convection

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

A 3D model applying temperature- and carbon concentration- dependent material properties was developed to describe the scrap melting behavior and carbon diffusion under natural convection. Simulated results agreed reasonably well with experimental ones. Scrap melting was subdivided into four stages: formation of a solidified layer, rapid melting of the solidified layer, carburization, and carburization + normal melting. The carburization stage could not be ignored at low temperature because the carburization time for the sample investigated was 214 s at 1573 K compared to 12 s at 1723 K. The thickness of the boundary layer with significant concentration difference at 1573 K increased from 130 µm at 5 s to 140 µm at 60 s. The maximum velocity caused by natural convection decreased from 0.029 m·s−1 at 5 s to 0.009 m·s−1 at 634 s because the differences in temperature and density between the molten metal and scrap decreased with time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Oeters and R.M. Ni, Metallurgy of Steelmaking, The Metallurgical Industry Press, Bei**g, 1997, p. 479.

    Google Scholar 

  2. R.D. Pehlke, P.D. Goodell, and R.W. Dunlap, Kinetics of steel dissolution in molten pig iron, Trans. Metall. Soc. ALME, 233(1965), p. 1420.

    CAS  Google Scholar 

  3. R.I.L. Guthrie and P. Stubbs, Kinetics of scrap melting in baths of molten pig iron, Can. Metall. Q., 12(1973), No. 4, p. 465.

    Article  CAS  Google Scholar 

  4. K. Mori and H. Nomura, Study on the rate of scrap melting in the steelmaking process, Tetsu-to-Hagané, 55(1969), No. 5, p. 347.

    Article  CAS  Google Scholar 

  5. E.M. Gol’dfarb and B.I. Sherstov, Heat and mass transfer when melting scrap in an oxygen converter, J. Eng. Phys., 18(1970), No. 3, p. 342.

    Article  Google Scholar 

  6. D. Weisz-Patrault, Coupled heat conduction and multiphase change problem accounting for thermal contact resistance, Int. J. Heat Mass Transfer, 104(2017), p. 595.

    Article  Google Scholar 

  7. A.K. Shukla, B. Deo, and D.G.C. Robertson, Scrap dissolution in molten iron containing carbon for the case of coupled heat and mass transfer control, Metall. Mater. Trans. B, 44(2013), No. 6, p. 1407.

    Article  CAS  Google Scholar 

  8. Y.K. Wu and M. Lacroix, Numerical simulation of the melting of scrap metal in a circular furnace, Int. Commun. Heat Mass Transfer, 22(1995), No. 4, p. 517.

    Article  CAS  Google Scholar 

  9. K. Isobe, H. Maede, K. Ozawa, K. Umezawa, and C. Saito, Analysis of the scrap melting rate in high carbon molten iron, Tetsu-to-Hagané, 76(1990), No. 11, p. 2033.

    Article  CAS  Google Scholar 

  10. A. Kruskopf and S. Louhenkilpi, 1-dimensional scrap melting model for steel converter (BOF), [in] Proceedings of the METEC & 2nd ESTAD, Düsseldorf, Germany, 2015, p. 15.

  11. A. Kruskopf, Multiphysical Modeling Approach for Basic Oxygen Steelmaking Process [Dissertation], Aalto University, Finland, 2018, p. 12.

    Google Scholar 

  12. A. Kruskopf and V.V. Visuri, A gibbs energy minimization approach for modeling of chemical reactions in a basic oxygen furnace, Metall. Mater. Trans. B, 48(2017), No. 6, p. 3281.

    Article  CAS  Google Scholar 

  13. S. Deng, A.J. Xu, G. Yang, and H.B. Wang, Analyses and calculation of steel scrap melting in a multifunctional hot metal ladle, Steel Res. Int., 90(2018), No. 3, p. 1.

    Google Scholar 

  14. H.P. Sun, Y.C. Liu, C.C. Lin, and L.U. Muh-Jung, Experimental observation of spherical scrap melting in hot metal, [in] International Congress on the Science & Technology of Steelmaking, Bei**g, China, 2015, p. 136.

  15. F.M. Penz, J. Schenk, R. Ammer, G. Klösch, K. Pastucha, and M. Reischl, Diffusive steel scrap melting in carbon-saturated hot metal-phenomenological investigation at the solid-liquid interface, Materials, 12(2019), No. 8, p. 1358.

    Article  CAS  Google Scholar 

  16. M. Gao, S.F. Yang, and Y.L. Zhang, Experimental study on mass transfer during scrap melting in the steelmaking process, Ironmaking Steelmaking, (2019), p. 1.

  17. H.L. Zhao, X. Zhao, L.Z. Mu, L.F. Zhang, and L.Q. Yang, Gas-liquid mass transfer and flow phenomena in a peirce-smith converter: a numerical model study, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1092.

    Article  CAS  Google Scholar 

  18. J. Dongik, K. Yumkyum, S. Minsoo, and L. Joonho, Kinetics of carbon dissolution of coke in molten iron, Metall. Mater. Trans. B, 43(2012), No. 6, p. 1308.

    Article  Google Scholar 

  19. A. Fluent, ANSYS Fluent Theory Guide, Release 15.0 ed., ANSYS Inc., Canonsburg, PA, 2013. ANSYS Inc., USA, 15317, 724.

    Google Scholar 

  20. J.X. Chen, Metallurgy of Iron and Steel (Steelmaking), The Metallurgical Industry Press, Bei**g, 2012, p. 174.

    Google Scholar 

  21. J. Szekely, Y.K. Chuang, and J.W. Hlinka, The melting and dissolution of low-carbon steels in iron-carbon melts, Metall. Mater. Trans. B, 3(1972), No. 11, p. 2825.

    Article  CAS  Google Scholar 

  22. Y.U. Kim and R. Pehlke, Mass transfer during dissolution of a solid into liquid in the iron-carbon system, Metall. Trans., 5(1974), No. 12, p. 2527.

    Article  CAS  Google Scholar 

  23. M. Kosaka and S. Minowa, Mass-transfer from solid metal cylinder into liquid metal, Tetsu-to-Hagane, 52(1966), No. 12, p. 1748.

    Article  CAS  Google Scholar 

  24. M. Kosaka and S. Minowa, Mass-transfer from graphite cylinder into liquid Fe-C alloy, Tetsu-to-Hagane, 53(2010), No. 13, p. 1467.

    Article  Google Scholar 

  25. K. Wu, Principle of Metallurgical Transmission, Peking University Press, Bei**g, 2016, p. 142.

    Google Scholar 

  26. J.K. Wright, Steel dissolution in quiescent and gas stirred Fe/C melts, Metall. Mater. Trans. B, 20(1989), No. 3, p. 363.

    Article  Google Scholar 

  27. Z.Y. Liu, Y.P. Bao, M. Wang, X. Li, and F.Z. Zeng, Austenite grain growth of medium carbon alloy steel with aluminum additions during heating process, Int. J. Miner. Metall. Mater., 26(2019), No. 3, p. 282.

    Article  CAS  Google Scholar 

  28. V. Dakre, D.R. Peshwe, S.U. Pathak, and A. Likhite, Effect of austenitization temperature on microstructure and mechanical properties of low carbon equivalent carbidic austempered ductile iron, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 770.

    Article  CAS  Google Scholar 

  29. G.S. Wei, R. Zhu, T.P. Tang, and K. Dong, Study on the melting characteristics of steel scrap in molten steel, Ironmaking Steel-making, 46(2019), No. 7, p. 609.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (No. 2019YFC1905701), the National Natural Science Foundation of China (Nos. 51674022 and 51734003), and the Key projects of NSFC (No. U1960201).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan-ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, M., Gao, Jt., Zhang, Yl. et al. Simulation on scrap melting behavior and carbon diffusion under natural convection. Int J Miner Metall Mater 28, 380–389 (2021). https://doi.org/10.1007/s12613-020-1997-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1997-0

Keywords

Navigation