Log in

Influence of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Directionally Solidified Al-Cu-Ni Eutectic Alloy

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

In this work, the mechanical properties of the Al-Cu-Ni eutectic alloy, Al-32.5 wt pct Cu-1 wt pct Ni, were investigated in terms of the dependency on growth rates. The Al-Cu-Ni eutectic alloy was directionally solidified at a constant temperature gradient, G = 4.93 K mm−1, with a wide range of growth rates (V = 9.25 to 2056.68 µm s−1) using a Bridgman-type directional solidification furnace. The eutectic spacing (λ), microhardness (HVT), and ultimate tensile strength (σUTS) were measured with standard techniques. The dependences of λ, HVT, and σUTS on V for directionally solidified Al-Cu-Ni eutectic alloy were experimentally obtained using regression analysis. The results obtained in the present work were compared with the similar experimental results in the literature. Finally, the elastic energy dependence on growth rates for Al-32.5 wt pct Cu-1 wt pct N alloy was determined from their nominal stress–strain plots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D.A. Porter and K.E. Easterling: Phase Transformations in Metals and Alloys, 2nd ed., CRC Press, Boca Raton, FL, 1992.

    Book  Google Scholar 

  2. R. Caram and S. Milenkovic: J. Cryst. Growth, 1999, vol. 198, pp. 844–49.

    Article  Google Scholar 

  3. H.Z. Fu and L. Liu: Mater. Sci. Forum, 2005, vol. 475–479, pp. 607–612.

    Article  Google Scholar 

  4. H. Jones: Rapid Solidification of Metals and Alloys, The Institution of Metallurgists, Sheffield, United Kingdom, 1982.

    Google Scholar 

  5. J.G. Kaufman and E.L. Rooy: Aluminum Alloy Castings: Properties, Processes, and Applications, ASM International, Materials Park, OH, 2004.

    Google Scholar 

  6. Y.S. Sun, G.W. Lorimer, and N. Ridley: Metall. Trans. A, 1990, vol. 21A, pp. 575–88.

    Article  CAS  Google Scholar 

  7. C.C. Jia, K. Ishida, and T. Nishizawa: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 473–85.

    Article  CAS  Google Scholar 

  8. V. Pelosin and A. Riviere: J. Alloys Compd., 1998, vol. 268, pp. 166–72.

    Article  CAS  Google Scholar 

  9. X.J. Liu, C.P. Wang, I. Ohnuma, R. Kainuma, and K. Ishida: J. Phase Equilib., 2001, vol. 22, pp. 431–38.

    Article  CAS  Google Scholar 

  10. C.H. Wang, S.W. Chen, C.H. Chang, and J.C. Wu: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 199–209.

    Article  CAS  Google Scholar 

  11. Materials Science International Team: Light Metal Systems, Part 2 Volume 11A2, of the Series Landolt–Börnstein–Group IV Physical Chemistry Al–Cu–Ni (Aluminium–Copper–Nickel), 2005, pp. 1–23.

  12. M. Rhême, F. Gonzales, and M. Rappaz: Scripta Mater., 2008, vol. 59, p. 440–43.

    Article  Google Scholar 

  13. F. Gonzales and M. Rappaz: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2797–806.

    Article  CAS  Google Scholar 

  14. A.E. Ares, S.F. Gueijmanb, R. Caramc, and C.E. Schvezov: J. Cryst. Growth, 2005, vol. 275, pp. 319–27.

    Article  Google Scholar 

  15. C. Yang, B.S. Li, M.X. Ren, and H.Z. Fu: Int. J. Adv. Manuf. Technol., 2010, vol. 46, pp. 173–78.

    Article  Google Scholar 

  16. A.E. Ares, L.M. Gassac, S.F. Gueijmanb, and C.E. Schvezova: J. Cryst. Growth, 2008 vol. 310 (7), pp. 1355–61.

    Article  CAS  Google Scholar 

  17. W.R. Osóri, C.M.A. Freire, and A. Garcia: J. Mater. Sci., 2005, vol. 40, pp. 4493–99.

    Article  Google Scholar 

  18. W.R. Osório, J.R. Spinelli, N. Cheung, and A. Garcia: Mater. Sci. Eng. AStruct., 2006, vol. 420, pp. 179–86.

    Article  Google Scholar 

  19. J. De Wilde, L. Froyen, and S. Rex: Scripta Mater., 2004, vol. 51, pp. 533–38.

    Article  Google Scholar 

  20. C. Zhang, Y. Wu, M. Fang, S. Wu, X. We, Y. Cheng, and Y. Sun: Chin. Sci. Bull., 1997, vol. 42 (24), pp. 2067–72.

    Article  CAS  Google Scholar 

  21. K.A. Jackson and J.D. Hunt: Trans. TMS-AIME, 1966, vol. 236, pp. 1129–42.

    CAS  Google Scholar 

  22. V. Datye and J.S. Langer: Phys. Rev. B, 1981, vol. 24, pp. 4155–69.

    Article  CAS  Google Scholar 

  23. V. Seetharaman and R. Trivedi: Metall. Trans. A, 1988, vol. 19A, pp. 2955–64.

    Article  CAS  Google Scholar 

  24. R. Trivedi, J.T. Mason, J.D. Verhoeven, and W. Kurz: Metall. Trans. A, 1991, vol. 22A, pp. 2523–33.

    Article  CAS  Google Scholar 

  25. A. Ourd**i, J. Liu, and R. Elliott: Mater. Sci. Technol.–London, 1994, vol. 10, pp. 312–18.

    Article  CAS  Google Scholar 

  26. H. Kaya, E. Çadırlı, and M. Gündüz: J. Mater. Process Technol., 2007, vol. 183, pp. 310–20.

    Article  CAS  Google Scholar 

  27. H. Kaya, E. Çadırlı, and M. Gündüz: J. Mater. Eng. Perf., 2003, vol. 12, pp. 456–69.

    Article  CAS  Google Scholar 

  28. V.T. Witusiewicz, U. Hecht, S. Rex, and M. Apel: Acta Mater., 2005, vol. 53, pp. 3663–69.

    Article  CAS  Google Scholar 

  29. E. Çadırlı, H. Kaya, and N. Maraşlı: Metall. Mater. Int., 2009, vol. 15, p. 741–51.

    Article  Google Scholar 

  30. M. Gündüz, H. Kaya, E. Çadırlı, and A. Özmen: Mater. Sci. Eng. A, 2004, vol. 369, p. 215–29.

    Article  Google Scholar 

  31. E. Çadırlı, H. Kaya, and M. Gündüz: Mater. Res. Bull., 2003, vol. 38, p. 1457–76.

    Article  Google Scholar 

  32. E. Çadırlı, H. Kaya, and M. Gündüz: J. Alloys Compd., 2007, vol. 431, p. 171–79.

    Article  Google Scholar 

  33. R. Trivedi, P. Magnin, and W. Kurz: Acta Metall., 1987, vol. 35, p. 971–80.

    Article  CAS  Google Scholar 

  34. J.N. Clark and R. Elliott: J. Cryst. Growth, 1976, vol. 33, p. 169–73.

    Article  CAS  Google Scholar 

  35. S.M.D. Borland and R. Elliott: Metall. Trans. A, 1987, vol. 9A, p. 1063–67.

    Google Scholar 

  36. S. Khan, A. Ourd**i, Q.S. Hamed, M.A.A. Najafabadi, and R. Elliott: J. Mater. Sci., 1993, vol. 28, p. 5957–62.

    Article  CAS  Google Scholar 

  37. E. Çadırlı and M. Gündüz: J. Mater. Proc. Technol., 2000, vol. 97, pp. 74–81.

    Article  Google Scholar 

  38. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Acta Mater, 2009, vol. 57, pp. 941–71.

    Article  CAS  Google Scholar 

  39. E. Acer, H. Erol, and M. Gündüz: Light Metals Technology Book Series Materials Science Forum, 2013, vol. 765, pp. 215–19.

  40. V.S. Zolotorevsky, N.A. Belov, and M.V. Glazoff: Casting Aluminum Alloys, Elsevier, Pittsburgh, PA, 2007, pp. 34–35.

    Google Scholar 

  41. E. Çadırlı: Met. Mater. Int., 2013, vol. 19, pp. 411–22.

    Article  Google Scholar 

  42. Y. Kaygısız and N. Maraşlı: Phys. Met. Metall., 2017, vol. 118, pp. 389–98.

    Article  Google Scholar 

  43. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu: Appl. Phys. A, 2009, vol. 95, pp. 923–32.

    Article  Google Scholar 

  44. E. Çadırlı, İ. Yılmazer, M. Şahin, and H. Kaya: Trans. Ind. Inst. Met., 2015, vol. 68, pp 817–27.

    Article  Google Scholar 

  45. Y. Kaygısız and N. Maraşlı: J. Alloys Compd., 2015, vol. 618, pp. 197–203.

    Article  Google Scholar 

  46. X. Lin, W.D. Huang, J. Feng, T. Li, and Y. Zhou: Acta Metall., 1999, vol. 47, pp. 3271–80.

    CAS  Google Scholar 

  47. K.P. Young and D.H. Kirkwood: Metall. Trans. A, 1975, vol. 6A, p. 197–205.

    Article  Google Scholar 

  48. E.Çadırlı, A. Ülgen, and M. Gündüz: Mater. Trans., JIM, 1999, vol. 40, pp. 989–96.

    Article  Google Scholar 

  49. M. Tassa and J.D. Hunt: J. Cryst. Growth, 1976, vol. 34, pp. 38–48.

    Article  CAS  Google Scholar 

  50. H. Kaya, U. Böyük, E. Çadırlı, and M. Gündüz: Kovove Mater., 2010, vol. 48, pp. 291–300.

    CAS  Google Scholar 

  51. R.M. Jordan and J.D. Hunt: Mater. Trans., 1971, vol. 2, pp. 3401–10.

    Article  CAS  Google Scholar 

  52. M.A. Mota, A.A. Coelho, J.M.Z. Bejarano, S. Gama, and R. Caram: J. Alloys Compd., 2005, vol. 399, pp. 196–201.

    Article  CAS  Google Scholar 

  53. E. Çadırlı, U. Böyük, H. Kaya, N. Maraşlı, K. Keşlioğlu, S. Akbulut, and Y. Ocak: J. Alloys Compd., 2009, vol. 470, pp. 150–56.

    Article  Google Scholar 

  54. A. Munitz: Metall. Trans. B, 1985, vol. 16B, p. 149–61.

    Article  CAS  Google Scholar 

  55. M. Zimmermann, M. Carrard, and W. Kurz: Acta Metall., 1989, vol. 37, p. 3305–13.

    Article  CAS  Google Scholar 

  56. N. Cheung, M.C.F. Ierardi, A. Garcia, and R. Vilar: Lasers, 2000, vol. 10, p. 275–91 (in English).

    CAS  Google Scholar 

  57. W.R. Osório and A. Garcia: Mater. Sci. Eng. A, 2002, vol. 325 (1–2), p. 103–11.

    Article  Google Scholar 

  58. J. Quaresma, C.A. Santos, and A. Garcia: Metall. Mater. Trans. A, 2000, vol. 31A (12), p. 3167-78.

    Article  CAS  Google Scholar 

  59. C. Siqueira, N. Cheung, and A. Garcia: Metall. Mater. Trans. A, 2002, vol. 33A (7), p. 2107–18.

    Article  CAS  Google Scholar 

  60. E.O. Hall: Proc. Phys. Soc. B, 1951, vol. 64 (9), p. 747–53.

    Article  Google Scholar 

  61. N.J. Petch: J. Iron Steel Inst., 1953, vol. 174, p. 25–28.

    CAS  Google Scholar 

  62. U. Böyük, N. Maraşlı, H. Kaya, E. Çadırlı, and K. Keşlioğlu: Curr. Appl. Phys., 2012, vol. 12, pp. 7–10.

    Article  Google Scholar 

  63. H. Kaya, U. Böyük, E. Çadırlı, and N. Maraşlı: Mater. Des., 2012, vol. 34, pp. 707–12.

    Article  CAS  Google Scholar 

  64. S. Engin, U. Böyük, and N Maraşlı: J. Alloy Compd., 2016, vol. 660, pp. 23–31.

    Article  CAS  Google Scholar 

  65. U. Böyük: Met. Mater. Int., 2012, vol. 18, pp. 933–38.

    Article  Google Scholar 

  66. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu: Mater. Des., 2012, vol. 34, p. 552–58.

    Article  CAS  Google Scholar 

  67. J. Fan, X. Li, Y. Su, J. Guo, and H. Fu: J. Alloy Compd., 2010, vol. 504 (1), p. 60–64.

    Article  CAS  Google Scholar 

  68. M.A. Taha: Met. Sci., 1979, vol. 13, p. 9–12.

    Article  CAS  Google Scholar 

  69. M.D. Dupouy, D. Camel, and J.J. Favier: Acta Metall., 1992, vol. 40, p. 1791.

    Article  CAS  Google Scholar 

  70. U. Böyük, S. Engin, and N. Maraşlı: Mater. Charact., 2011, vol. 62, pp. 844–51.

    Article  Google Scholar 

  71. Y. Murata, I. Nakaya, and M. Morinaga: Metall. Mater. Trans. B, 2008, vol. 49B, pp. 20–23.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Erciyes University Scientific Research Project Unit under Contract No. FDK-2013-4741. The researchers are thankful for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necmettin Maraşlı.

Additional information

Manuscript submitted April 3, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayram, Ü., Maraşlı, N. Influence of Growth Rate on Eutectic Spacing, Microhardness, and Ultimate Tensile Strength in the Directionally Solidified Al-Cu-Ni Eutectic Alloy. Metall Mater Trans B 49, 3293–3305 (2018). https://doi.org/10.1007/s11663-018-1404-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-018-1404-7

Keywords

Navigation