Log in

High Temperature Oxidation Study of Nano-Y2O3 Dispersed Ferritic Alloys Synthesized by Mechanical Alloying and Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This study concerns mechanism and kinetics of isothermal oxidation of four Fe-Cr-Al-Ti ferritic alloys in the range 700 °C to 900 °C for up to 50 hours in air. These four alloys with nominal compositions of 83.0Fe-13.5Cr-2.0Al-0.5Ti (alloy A), 79.0Fe-17.5Cr-2.0Al-0.5Ti (alloy B), 75.0Fe-21.5Cr-2.0Al-0.5Ti (alloy C), and 71.0Fe-25.5Cr-2.0Al-0.5Ti (alloy D) each with 1.0 wt pct nano-Y2O3 dispersion were synthesized by mechanical alloying and sintering at 1000 °C by hot isostatic pressing, high pressure sintering, hydrostatic extrusion and pulse plasma sintering techniques. A detailed characterization of the phase aggregate, microstructure and micro-composition of the oxide scale was carried out by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy, respectively. Oxidation kinetics appear to follow a parabolic rate with an activation energy of 135 to 234 kJ/mol, which depend on alloy composition (i.e., Cr content). Oxidation mostly occurred by counter-ionic diffusion of oxygen from air to the interior and cations (Cr+3 or Fe+3) from the bulk toward the surface. Alloy D sintered by hot isostatic pressing offered the highest resistance to oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References:

  1. R. Viswanathan and W. Bakker, 2001, Journal of Materials Engineering and Performance, 2001, vol. 10(1), pp. 81-95.

    Article  CAS  Google Scholar 

  2. W. Yan, W. Wang, Y.Y. Shan, and K. Yang, Front. Mater. Sci. 2013, vol. 7(1), pp. 1–27.

    Google Scholar 

  3. K. Asano, V. Kohno, A. Kohyama, T. Suzuki, and H. Kusanagi, Journal of Nuclear Materials, 1988, vol.155, pp. 928-934.

    Article  Google Scholar 

  4. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, A. Ulbricht, Journal of Nuclear Materials, 2016, vol. 472, pp. 206-214.

    Article  CAS  Google Scholar 

  5. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, D.T. Hoelzer, Journal of Nuclear Materials, 2005, vol. 341, pp. 103–114.

    Article  CAS  Google Scholar 

  6. S. Ohtuska, S. Ukai, M. Fujiwara, T. Kaito, and T. Narita, Mater. Trans. A, 2005, vol. 46 (3), pp. 487-492.

    Google Scholar 

  7. S. Ukai, S. Mizuta, T. Yoshitake, T. Okuda, M. Fujiwara, S. Hagi, and T. Kobayashi, Journal of Nuclear Materials, 2000, vol. 283–87, pp.702-706.

    Article  Google Scholar 

  8. M.K. Miller, D.T. Hoelzer, E.A. Kenik, and K.F. Russell, Intermetallics, 2005, vol. 13, pp. 387-392.

    Article  CAS  Google Scholar 

  9. R.A. Versaci, D. Clemens, W.J. Quadakkers, and R. Hussey, Sloid State Ionics 1993, vol. 59, pp. 235-242.

    Article  CAS  Google Scholar 

  10. T.A. Ramanarayanan, R. Ayer, R. Petkovic-Luton and D.P. Leta, High Temp. High Press. 1988, vol. 20, pp. 277-292.

    CAS  Google Scholar 

  11. S.K. Karak, C.S. Vishnu, Z. Witczak, W. Lojkowski, J. D. Majumdar and I. Manna, Wear, 2010, vol. 270, pp. 5-11.

    Article  CAS  Google Scholar 

  12. S.K. Karak, T. Chudoba, Z. Witczak, W. Lojkowski and I. Manna, Mater. Sci.Engg A. 2011, vol. 528, pp. 7475-7483

    Article  CAS  Google Scholar 

  13. S.K. Karak, J. D. Majumdar, Z. Witczak, W. Lojkowski, L. Ciupinski, K.J. Kurzydlowski and I. Manna, Metall. Mater. Trans., 2013, vol. 44A, pp. 2884–2894.

    Article  Google Scholar 

  14. S.K. Karak, J.D. Majumdar, Z. Witczak, W. Lojkowski, I. Manna (2013) Mater. Sci. Eng. A vol. 580, pp. 231–241.

    Article  CAS  Google Scholar 

  15. S.K. Karak, J. D. Majumdar, W. Lojkowski, A. Michalski, L. Ciupinski, K.J. Kurzydlowski and I.Manna, Philos.Mag. A, 2012, vol. 92, pp.516-534.

    Article  CAS  Google Scholar 

  16. M. Matijasevic and A. Almazouzi, Journal of Nuclear Materials, 2008, vol. 377, pp. 147-154.

    Article  CAS  Google Scholar 

  17. R. Soundberg, Chemometrics and Intelligent Laboratory System, 1998, vol. 41, pp. 249-252.

    Article  Google Scholar 

  18. M. Han, S. Peng, Z. Wang, Z. Yang, and X. Chen, Journal of Power Sources, 2007, vol. 164, pp. 278-283.

    Article  CAS  Google Scholar 

  19. Y. Mishin, C. Herzig, J. Bernardini, and W. Gust, Inter. Mater. Rev. 1997, vol. 42, pp. 155-178.

    Article  CAS  Google Scholar 

  20. L.G. Harrison, Trans. Faraday Soc. 1961, vol. 57, pp. 1191-1199.

    Article  CAS  Google Scholar 

  21. B. Chattopadhyay and G. C. Wood, Oxid. Met, 1970, vol. 2, pp. 373-398.

    Article  CAS  Google Scholar 

  22. JH Kim, KM Kim, TS Byun, DW Lee, CH Park, Thermochimica Acta, 2014, vol. 579, pp. 1–8.

    Article  CAS  Google Scholar 

  23. Y. Chen, K. Sridharan, T. Allen, and S. Ukai, Journal of Nuclear Materials, 2006, vol. 359, pp. 50-58.

    Article  CAS  Google Scholar 

  24. Chan-Gyu Lee, Yoshiaki Iijima, Tatsuhiko Hiratani, and Ken-ichi Hirano, Mater. Trans. JIM, 1990, vol. 31(4), pp. 255-261.

    Article  CAS  Google Scholar 

  25. N. H. Oono, S. Ukai, K. Tominaga, N. Ebisawa, and K. Tomura, J Mater. Sci., 2019, vol. 54, pp. 8786–8799.

    Article  CAS  Google Scholar 

  26. R.L. Klueh, P.J. Maziasz, I.S. Kim, L. Heatherly, D.T. Hoelzer, N. Hashimoto, E.A. Kenik, and K. Miyahara, Journal of Nuclear Materials, 2002, vol. 307–311, pp. 773–777.

    Article  Google Scholar 

  27. H. Masuda, H. Tobe, E. Sato, Y. Sugino, and S. Ukai, Acta Mater., 2017, vol. 132, pp. 245-254.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the partial financial support for the present study from the Department of Science and Technology (Project JCP and DGL) and from the Indian Space Research Organization (Project NCH and ONC), Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Manna.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted July 5, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meharwal, A., Kumar, M., Karak, S.K. et al. High Temperature Oxidation Study of Nano-Y2O3 Dispersed Ferritic Alloys Synthesized by Mechanical Alloying and Sintering. Metall Mater Trans A 51, 5257–5267 (2020). https://doi.org/10.1007/s11661-020-05918-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05918-7

Navigation