Log in

Recent progresses in the single-atom catalysts for the oxygen reduction reaction

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The development of high-performance electrocatalysts is critical for the widespread applications of the sustainable energy technologies. In this context, single-atom catalysts (SACs) with isolated metal sites have attracted more attention because of their maximum atom utilization and remarkable electrocatalytic performance. However, the high surface energy often results in a low loading of the single metal atoms, limiting their practical applications. Herein, we give an up-to-date review on the progress for the SACs. The research progress of noble metal SACs, transition metal SACs, single-atom alloy SACs, and double metal SACs is summarized. The advantages and disadvantages of synthesis strategies including wet chemistry, atomic layer deposition, and high-temperature pyrolysis are discussed. We also propose some new research direction to obtain the high-performance SACs. It is expected to realize widely applications of SACs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Copyright 2021, Elsevier. b Schematic pathway for the ORR on N-doped carbon materials [8]. Copyright 2016, Science

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available.

References

  1. Zhao YM, Zhang PC, Xu C, Zhou XY, Liao LM, Wei PJ, Liu E, Chen H, He Q, Liu JG (2020) Design and preparation of Fe-N5 catalytic sites in single-atom catalysts for enhancing the oxygen reduction reaction in fuel cells. ACS Appl Mater Interfaces 12(15):17334–17342

    Article  CAS  Google Scholar 

  2. Zhang S, Ao X, Huang J, Wei B, Zhai Y, Zhai D, Deng W, Su C, Wang D, Li Y (2021) Isolated single-atom Ni-N5 catalytic site in hollow porous carbon capsules for efficient lithium-sulfur batteries. Nano Lett 21(22):9691–9698

    Article  CAS  Google Scholar 

  3. Xu Y, Gong H, Song L, Kong Y, Jiang C, Xue H, Li P, Huang X, He J, Wang T (2022) A highly efficient and free-standing copper single atoms anchored nitrogen-doped carbon nanofiber cathode toward reliable Li–CO2 batteries. Mater Today Ener 25:100967

    Article  CAS  Google Scholar 

  4. Xu X, Wang S, Guo S, San Hui K, Ma J, Dinh DA, Hui KN, Wang H, Zhang L, Zhou G (2022) Cobalt phosphosulfide nanoparticles encapsulated into heteroatom-doped carbon as bifunctional electrocatalyst for Zn–air battery. Adv Powder Mater 1(3):100027

    Article  Google Scholar 

  5. Yu D, Ma Y, Hu F, Lin CC, Li L, Chen HY, Han X, Peng S (2021) Dual-sites coordination engineering of single atom catalysts for flexible metal–air batteries. Adv Energy Mater 11(30):2101242

    Article  CAS  Google Scholar 

  6. Xu X, Hui KS, Hui KN, Shen J, Zhou G, Liu J, Sun Y (2021) Engineering strategies for low-cost and high-power density aluminum-ion batteries. Chem Eng J 418(15):129385

    Article  CAS  Google Scholar 

  7. Cheng Y, Zhou S, Wang R, Gao X, Zhang Y, **ang Z (2021) A superior unitary oxygen electrode with accelerated mass transfer and highly exposed active sites for rechargeable air-based batteries. J Power Sources 488:229468

    Article  CAS  Google Scholar 

  8. Guo D, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J (2016) Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 351(6271):361–365

  9. Gawish MA, Drmosh QA, Onaizi SA (2022) Single atom catalysts: an overview of the coordination and interactions with metallic supports. Chem Rec 22(7):e202100328

    Article  CAS  Google Scholar 

  10. Qi P, Wang J, Djitcheu X, He D, Liu H, Zhang Q (2022) Techniques for the characterization of single atom catalysts. RSC Adv 12:1216–1227

    Article  CAS  Google Scholar 

  11. Xu X, Zhao X, Hui KS, Dinh DA, Hui KN (2021) Rechargeable batteries: regulating electronic and ionic transports for high electrochemical performance. Adv Mater Technol 7(5):2101107

    Article  Google Scholar 

  12. Xu M, Lai C, Liu X, Li B, Zhang M, Xu F, Liu S, Li L, Qin L, Yi H, Fu Y (2021) COF-confined catalysts: from nanoparticles and nanoclusters to single atoms. J Mater Chem A 9:24148–24174

    Article  CAS  Google Scholar 

  13. Liu X, Zhang G, Wang L, Fu H (2021) Structural design strategy and active site regulation of high-efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery. Small 17(48):e2006766

    Article  Google Scholar 

  14. Lai WH, Zhang BW, Hu Z, Qu XM, Jiang YX, Wang YX, Wang JZ, Liu HK, Chou SL (2019) The quasi-Pt-allotrope catalyst: hollow PtCo@single-atom Pt1 on nitrogen-doped carbon toward superior oxygen reduction. Adv Func Mater 29(13):1807340

    Article  Google Scholar 

  15. Tong M, Wang L, Fu H (2021) Designed synthesis and catalytic mechanisms of non-precious metal single-atom catalysts for oxygen reduction reaction. Small Methods 5(10):2100865

    Article  CAS  Google Scholar 

  16. Chen J-J, Gu S, Hao R, Wang Z-Y, Li M-Q, Li Z-Q, Liu K, Liao K-M, Wang Z-Q, Huang H, Li Y-Z, Zhang K-L, Lu Z-G (2022) Co single atoms and nanoparticles dispersed on N-doped carbon nanotube as high-performance catalysts for Zn-air batteries. Rare Met 41:2055–2062

    Article  CAS  Google Scholar 

  17. **aoqin X, Jiahao X, Bin L, Rongyue W, Mingyang L, Jun Z, ** L, Zhuang C, **long Z (2022) PBA-derived FeCo alloy with core-shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl Catal B 316:121687

    Article  Google Scholar 

  18. Wang M, Zhang H, Liu Y, Pan Y (2022) Research progress of precise structural regulation of single atom catalyst for accelerating electrocatalytic oxygen reduction reaction. J Ener Chem 72:56–72

    CAS  Google Scholar 

  19. Qingyun Q, Shufang J, Yuanjun C, Dingsheng W, Yadong L (2021) Design and structural engineering of single-atomic-site catalysts for acidic oxygen reduction reaction. Trend Chem 3(11):954–968

    Article  Google Scholar 

  20. Han X, Ling X, Yu D, **e D, Li L, Peng S, Zhong C, Zhao N, Deng Y, Hu W (2019) Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv Mater 31(49):e1905622

    Article  Google Scholar 

  21. Guo J, Liu H, Li D, Wang J, Djitcheu X, He D, Zhang Q (2022) A minireview on the synthesis of single atom catalysts. RSC Advances 12:9373–9394

  22. Gawande MB, Ariga K, Yamauchi Y (2021) Single-atom catalysts, Advanced Materials. Interfaces 8(8):2100436

    CAS  Google Scholar 

  23. Lin J, Chen X, Zheng Y, **ao Y, Zheng Y, Jiang L (2022) Sulfur-resistant methane combustion invoked by surface property regulation on palladium-based catalysts. Appl Surf Sci 587:152835

    Article  CAS  Google Scholar 

  24. Morales-Leal FJ, Rivera De la Rosa J, Lucio-Ortiz CJ, De Haro Del DA, Río MA, Garza-Navarro W, Tian JEH (2021) Monometallic platinum and palladium–based catalysts in the competitive oxidation of methanol over the liquid–phase methanol–ethanol mixtures. Chem Eng J 426:131623

    Article  CAS  Google Scholar 

  25. Zhao W, Wang J, Yin R, Li B, Huang X, Zhao L, Qian L (2020) Single-atom Pt supported on holey ultrathin g-C3N4 nanosheets as efficient catalyst for Li-O2 batteries. J Colloid Interface Sci 564:28–36

    Article  CAS  Google Scholar 

  26. Fan M, Cui J, Zhang J, Wu J, Chen S, Song L, Wang Z, Wang A, Vajtai R, Wu Y, Ajayan PM, Jiang J, Sun D (2021) The modulating effect of N coordination on single-atom catalysts researched by Pt-N-C model through both experimental study and DFT simulation. J Mater Sci Technol 91:160–167

    Article  CAS  Google Scholar 

  27. Weikai X, Yonghui Z, Zheng J, ** D, Peng G, **g Q, Kenichi K, Miho Y, Yuhan S (2018) Palladium single atoms supported by interwoven carbon nanotube and manganese oxide nanowire networks for enhanced electrocatalysis†. J Mater Chem A 18:5067–5073

    Google Scholar 

  28. Meng Y, Li J-C, Zhao S-Y, Shi C, Li X-Q, Zhang L, Hou P-X, Liu C, Cheng H-M (2021) Fluorination-assisted preparation of self-supporting single-atom Fe-N-doped single-wall carbon nanotube film as bifunctional oxygen electrode for rechargeable Zn-Air batteries. Appl Catal B 294:120239

    Article  CAS  Google Scholar 

  29. Cai S, Cheng Y, Meng Z, Li G, Wu J, Kan E, Ouyang B, Zhang H, Tang H (2022) The design of single iron atoms dispersed with nitrogen coordination environment electrocatalyst for zinc-air battery. J Power Sources 529:231174

    Article  CAS  Google Scholar 

  30. Han J, Bao H, Wang J-Q, Zheng L, Sun S, Wang ZL, Sun C (2021) 3D N-doped ordered mesoporous carbon supported single-atom Fe-N-C catalysts with superior performance for oxygen reduction reaction and zinc-air battery. Appl Catal B 280:119411

    Article  CAS  Google Scholar 

  31. Cao Y, Peng H, Chu S, Tang Y, Huang C, Wang Z, Liu F, Wu J, Shan B, Chen R (2021) Molten-salt-assisted thermal emitting method to transform bulk Fe2O3 into Fe single atom catalysts for oxygen reduction reaction in Zn-air battery. Chem Eng J 420:129713

    Article  CAS  Google Scholar 

  32. Han J, Meng X, Lu L, Bian J, Li Z, Sun C (2019) Single-atom Fe-Nx-C as an efficient electrocatalyst for zinc–air batteries. Adv Func Mater 29(41):1808872

    Article  CAS  Google Scholar 

  33. Chen K, Kim S, Je M, Choi H, Shi Z, Vladimir N, Kim KH, Li OL (2021) Ultrasonic plasma engineering toward facile synthesis of single-atom M-N4/N-doped carbon (M=Fe, Co) as superior oxygen electrocatalyst in rechargeable zinc-air batteries. Nanomicro Lett 13(1):60

    Article  Google Scholar 

  34. Guo J, Yan X, Liu Q, Li Q, Xu X, Kang L, Cao Z, Chai G, Chen J, Wang Y, Yao J (2018) The synthesis and synergistic catalysis of iron phthalocyanine and its graphene-based axial complex for enhanced oxygen reduction. Nano Energy 46:347–355

    Article  CAS  Google Scholar 

  35. Wu D, Hu J, Zhu C, Zhang J, **g H, Hao C, Shi Y (2021) Salt melt synthesis of Chlorella-derived nitrogen-doped porous carbon with atomically dispersed CoN4 sites for efficient oxygen reduction reaction. J Colloid Interface Sci 586:498–504

    Article  CAS  Google Scholar 

  36. Xu Z, Zhu J, Shao J, **a Y, Tseng J, Jiao C, Ren G, Liu P, Li G, Chen R, Chen S, Huang F, Wang H-L (2022) Atomically dispersed cobalt in core-shell carbon nanofiber membranes as super-flexible freestanding air-electrodes for wearable Zn-air batteries. Energy Storage Mater 47:365–375

    Article  Google Scholar 

  37. Xu R, Wang X, Zhang C, Zhang Y, Jiang H, Wang H, Su G, Huang M, Toghan A (2022) Engineering solid–liquid-gas interfaces of single-atom cobalt catalyst for enhancing the robust stability of neutral Zn-air batteries under high current density. Chem Eng J 433:133685

    Article  CAS  Google Scholar 

  38. Yang H, Gao S, Rao D, Yan X (2022) Designing superior bifunctional electrocatalyst with high-purity pyrrole-type CoN4 and adjacent metallic cobalt sites for rechargeable Zn-air batteries. Energy Storage Mater 46:553–562

    Article  Google Scholar 

  39. Luo F, Zhu J, Ma S, Li M, Xu R, Zhang Q, Yang Z, Qu K, Cai W, Chen Z (2021) Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries. Energy Storage Mater 35:723–730

    Article  Google Scholar 

  40. Qiu HJ, Du P, Hu K, Gao J, Li H, Liu P, Ina T, Ohara K, Ito Y, Chen M (2019) Metal and nonmetal codoped 3D nanoporous graphene for efficient bifunctional electrocatalysis and rechargeable Zn-air batteries. Adv Mater 31(19):e1900843

    Article  Google Scholar 

  41. Zhao S, Cheng Y, Veder J-P, Johannessen B, Saunders M, Zhang L, Liu C, Chisholm MF, De Marco R, Liu J, Yang S-Z, Jiang SP (2018) One-pot pyrolysis method to fabricate carbon nanotube supported Ni single-atom catalysts with ultrahigh loading. ACS Appl Energy Mater 1:5286–5297

    CAS  Google Scholar 

  42. Yang J, Liu W, Xu M, Liu X, Qi H, Zhang L, Yang X, Niu S, Zhou D, Liu Y, Su Y, Li JF, Tian ZQ, Zhou W, Wang A, Zhang T (2021) Dynamic behavior of single-atom catalysts in electrocatalysis: identification of Cu-N3 as an active site for the oxygen reduction reaction. J Am Chem Soc 143(36):14530–14539

    Article  CAS  Google Scholar 

  43. Gu L, Dong Y, Du H, Zhang Y, Yuan Q, Wang B, Wang H, Zhao J, Zhang N (2020) Preparation and characterization of nitrogen-riched polymer based materials and the role of Cu–N active site in promoting the ORR activity of the catalyst. Catal Surv Asia 24(3):219–231

    Article  Google Scholar 

  44. Han G, Zheng Y, Zhang X, Wang Z, Gong Y, Du C, Banis MN, Yiu Y-M, Sham T-K, Gu L, Sun Y, Wang Y, Wang J, Gao Y, Yin G, Sun X (2019) High loading single-atom Cu dispersed on graphene for efficient oxygen reduction reaction. Nano Energy 66:104088

    Article  CAS  Google Scholar 

  45. Jiang R, Chen X, Liu W, Wang T, Qi D, Zhi Q, Liu W, Li W, Wang K, Jiang J (2021) Atomic Zn sites on N and S codoped biomass-derived graphene for a high-efficiency oxygen reduction reaction in both acidic and alkaline electrolytes. ACS Appl Ener Mater 4(3):2481–2488

    Article  CAS  Google Scholar 

  46. Wang N, Liu Z, Ma J, Liu J, Zhou P, Chao Y, Ma C, Bo X, Liu J, Hei Y, Bi Y, Sun M, Cao M, Zhang H, Chang F, Wang H-L, Xu P, Hu Z, Bai J, Sun H, Hu G, Zhou M (2020) Sustainability perspective-oriented synthetic strategy for zinc single-atom catalysts boosting electrocatalytic reduction of carbon dioxide and oxygen. ACS Sustain Chem Eng 8(36):13813–13822

    Article  CAS  Google Scholar 

  47. Li J, Chen S, Yang N, Deng M, Ibraheem S, Deng J, Li J, Li L, Wei Z (2019) Ultrahigh-loading zinc single-atom catalyst for highly efficient oxygen reduction in both acidic and alkaline media. Angew Chem Int Ed Engl 58(21):7035–7039

    Article  CAS  Google Scholar 

  48. Wang J, Li H, Liu S, Hu Y, Zhang J, **a M, Hou Y, Tse J, Zhang J, Zhao Y (2021) Turning on Zn 4s electrons in a N2-Zn-B2 configuration to stimulate remarkable ORR performance. Angew Chem Int Ed Engl 60(1):181–185

    Article  CAS  Google Scholar 

  49. Zhiyu L, Hao H, Ling C, Yang Y, Ruirui Z, Qianwang C (2019) Atomically dispersed Mn within carbon frameworks as high-performance oxygen reduction electrocatalysts for zinc–air battery. ACS Sustain Chem Eng 8(1):427–434

    Google Scholar 

  50. Yan L, **e L, Wu XL, Qian M, Chen J, Zhong Y, Hu Y (2021) Precise regulation of pyrrole-type single-atom Mn-N4 sites for superior pH-universal oxygen reduction. Carbon Energy 3(6):856–865

    Article  CAS  Google Scholar 

  51. Sahoo L, Garg R, Kaur K, Vinod CP, Gautam UK (2022) Ultrathin twisty PdNi alloy nanowires as highly active ORR electrocatalysts exhibiting morphology-induced durability over 200 K cycles. Nano Lett 22(1):246–254

    Article  CAS  Google Scholar 

  52. Betancourt LE, Rojas-Pérez A, Orozco I, Frenkel AI, Li Y, Sasaki K, Senanayake SD, Cabrera CR (2020) Enhancing ORR performance of bimetallic PdAg electrocatalysts by designing interactions between Pd and Ag. ACS Applied Energy Materials 3(3):2342–2349

    Article  CAS  Google Scholar 

  53. Kim D-H, Lee E, Pak C (2021) Effect of rare-earth elements in Pd ternary alloy catalysts on activity toward oxygen reduction reaction. Catal Today 359:106–111

    Article  CAS  Google Scholar 

  54. Bai J, Ge W, Zhou P, Xu P, Wang L, Zhang J, Jiang X, Li X, Zhou Q, Deng Y (2022) Precise constructed atomically dispersed Fe/Ni sites on porous nitrogen-doped carbon for oxygen reduction. J Colloid Interface Sci 616:433–439

    Article  CAS  Google Scholar 

  55. Liu J, Fan C, Liu G, Jiang L (2021) MOF-derived dual metal (Fe, Ni)–nitrogen–doped carbon for synergistically enhanced oxygen reduction reaction. Appl Surf Sci 538:148017

    Article  CAS  Google Scholar 

  56. Wang H, Su S, Yu T, Meng C, Zhou H, Zhao W, Yan S, Bian T, Yuan A (2022) FeNi/NiFe2O4 hybrids confined in N-doped carbon sponge derived from Hofmann-type MOFs for oxygen electrocatalysis. Appl Surf Sci 596:153522

    Article  CAS  Google Scholar 

  57. Ma Y, Fan H, Wu C, Zhang M, Yu J, Song L, Li K, He J (2021) An efficient dual-metal single-atom catalyst for bifunctional catalysis in zinc-air batteries. Carbon 185:526–535

    Article  CAS  Google Scholar 

  58. Zhang C, Wu C, Gao Y, Gong Y, Liu H, He J (2021) FeNi nanoparticles coated on N-doped ultrathin graphene-like nanosheets as stable bifunctional catalyst for Zn-air batteries. Chem Asian J 16(12):1592–1602

    Article  CAS  Google Scholar 

  59. Wu Y, Ye C, Yu L, Liu Y, Huang J, Bi J, Xue L, Sun J, Yang J, Zhang W, Wang X, **ong P, Zhu J (2022) Soft template-directed interlayer confinement synthesis of a Fe-Co dual single-atom catalyst for Zn-air batteries. Energy Storage Mater 45:805–813

    Article  Google Scholar 

  60. Liu J, He T, Wang Q, Zhou Z, Zhang Y, Wu H, Li Q, Zheng J, Sun Z, Lei Y, Ma J, Zhang Y (2019) Confining ultrasmall bimetallic alloys in porous N–carbon for use as scalable and sustainable electrocatalysts for rechargeable Zn–air batteries. J Mater Chem A 7(20):12451–12456

    Article  CAS  Google Scholar 

  61. Kumar Y, Kibena-Poldsepp E, Kozlova J, Rahn M, Treshchalov A, Kikas A, Kisand V, Aruvali J, Tamm A, Douglin JC, Folkman SJ, Gelmetti I, Garces-Pineda FA, Galan-Mascaros JR, Dekel DR, Tammeveski K (2021) Bifunctional oxygen electrocatalysis on mixed metal phthalocyanine-modified carbon nanotubes prepared via pyrolysis. ACS Appl Mater Interfaces 13(35):41507–41516

    Article  CAS  Google Scholar 

  62. Yu K, Shi P-H, Fan J-C, Min Y-L, Xu Q-J (2019) Porous Fe Co, and N-co-doped carbon nanofibers as high-efficiency oxygen reduction catalysts. J Nanopart Res 21(11):230

    Article  CAS  Google Scholar 

  63. Zhou M, Zhu Z, Ju Y, Zhai Y, Jiao L, Liu M, Yang W, Tang J (2022) Bimetallic FeCo–N–C catalyst for efficient oxygen reduction reaction. Electroanalysis 34:1–8

    Article  Google Scholar 

  64. Lai WH, Zhang L, Yan Z, Hua W, Indris S, Lei Y, Liu H, Wang YX, Hu Z, Liu HK, Chou S, Wang G, Dou SX (2021) Activating inert surface Pt single atoms via subsurface do** for oxygen reduction reaction. Nano Lett 21(19):7970–7978

    Article  CAS  Google Scholar 

  65. **ang Z, Li W, Liu F, Tan F, Han F, Wang X, Shao C, Xu M, Liu W, Yang X (2021) Catalyst with a low load of platinum and high activity for oxygen reduction derived from strong adsorption of Pt–N4 moieties on a carbon surface. Electrochem Commun 127:107039

    Article  CAS  Google Scholar 

  66. Kim HE, Lee IH, Cho J, Shin S, Ham HC, Kim JY, Lee H (2019) Palladium single-atom catalysts supported on C@C3N4 for electrochemical reactions. ChemElectroChem 6(18):4757–4764

    Article  CAS  Google Scholar 

  67. Cheng X, Wang Y, Lu Y, Zheng L, Sun S, Li H, Chen G, Zhang J (2022) Single-atom alloy with Pt-Co dual sites as an efficient electrocatalyst for oxygen reduction reaction. Appl Catal B 306(5):121112

    Article  CAS  Google Scholar 

  68. Lee W-J, Bera S, Woo H-J, Hong W, Park J-Y, Oh S-J, Kwon S-H (2022) Atomic layer deposition enabled PtNi alloy catalysts for accelerated fuel-cell oxygen reduction activity and stability. Chem Eng J 442:136123

    Article  CAS  Google Scholar 

  69. Liu J, Lan J, Yang L, Wang F, Yin J (2019) PtM (M=Fe Co, Ni) Bimetallic nanoclusters as active, methanol-tolerant, and stable catalysts toward the oxygen reduction reaction. ACS Sustain Chem Eng 7(7):6541–6549

    Article  CAS  Google Scholar 

  70. Li X, Liu Y, Zhu J, Tsiakaras P, Shen PK (2022) Enhanced oxygen reduction and methanol oxidation reaction over self-assembled Pt-M (M=Co, Ni) nanoflowers. J Colloid Interface Sci 607(Pt2):1411–1423

    Article  CAS  Google Scholar 

  71. Peng L, Shang L, Zhang T, Waterhouse GIN (2020) Recent advances in the development of single-atom catalysts for oxygen electrocatalysis and zinc–air batteries. Adv Energy Mater 10(48):2003018

    Article  CAS  Google Scholar 

  72. Jeong YS, Park JB, Jung HG, Kim J, Luo X, Lu J, Curtiss L, Amine K, Sun YK, Scrosati B, Lee YJ (2015) Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries. Nano Lett 15(7):4261–4268

    Article  CAS  Google Scholar 

  73. Fung V, Hu G, Tao FF, Jiang D-E (2019) Methane chemisorption on oxide-supported Pt single atom. ChemPhysChem 20(17):2217–2220

    Article  CAS  Google Scholar 

  74. Wan Q, Fung V, Lin S, Wu Z, Jiang D-E (2020) Perovskite-supported Pt single atoms for methane activation. J Mater Chem A 8:4362–4368

    Article  CAS  Google Scholar 

  75. Han B, Guo Y, Huang Y, ** W, Xu J, Luo J, Qi H, Ren Y, Liu X, Qiao B, Zhang T (2020) Strong metal-support interactions between Pt single atoms and TiO2. Angew Chem Int Ed 59(29):11824–11829

    Article  CAS  Google Scholar 

  76. Zengxi W, Bowen D, Peng C, Teng Z, Shuangliang Z (2021) Palladium-based single atom catalysts for high-performance electrochemical production of hydrogen peroxide. Chem Eng J 428:131112

    Google Scholar 

  77. **ang C, Liu Q, Shi L, Liu Z (2020) Radical-assisted formation of Pd single atoms or nanoclusters on biochar. Front Chem 8:598352

    Article  CAS  Google Scholar 

  78. Strasser JW, Crooks RM (2022) Single atoms and small clusters of atoms may accompany Au and Pd dendrimer-encapsulated nanoparticles. Soft Matter 18:5067–5073

    Article  CAS  Google Scholar 

  79. Wang N, Zhao X, Zhang R, Yu S, Levell ZH, Wang C, Ma S, Zou P, Han L, Qin J, Ma L, Liu Y, **n HL (2022) Highly selective oxygen reduction to hydrogen peroxide on a carbon-supported single-atom Pd electrocatalyst. ACS Catal 12(7):4156–4164

    Article  CAS  Google Scholar 

  80. Qin Z, Zhao J (2022) 1 T-MoSe2 monolayer supported single Pd atom as a highly-efficient bifunctional catalyst for ORR/OER. J Colloid Interface Sci 605:155–162

    Article  CAS  Google Scholar 

  81. Fortunato GV, Bezerra LS, Cardoso ESF, Kronka MS, Santos AJ, Greco AS, Junior JLR, Lanza MRV, Maia G (2022) Using palladium and gold palladium nanoparticles decorated with molybdenum oxide for versatile hydrogen peroxide electroproduction on graphene nanoribbons. ACS Appl Mater Interfaces 14(5):6777–6793

    Article  CAS  Google Scholar 

  82. Vega-Cartagena M, Rojas-Pérez A, Colón-Quintana GS, Blasini Pérez DA, Peña-Duarte A, Larios-Rodríguez E, De Jesús MA, Cabrera CR (2021) Potential dependent Ag nanoparticle electrodeposition on Vulcan XC-72R carbon support for alkaline oxygen reduction reaction. J Electroanalytic Chem 891:115242

    Article  CAS  Google Scholar 

  83. **ao M, Zhu J, Li G, Li N, Li S, Cano ZP, Ma L, Cui P, Xu P, Jiang G, ** H, Wang S, Wu T, Lu J, Yu A, Su D, Chen Z (2019) A single-atom iridium heterogeneous catalyst in oxygen reduction reaction. Angew Chem Int Ed Engl 58(28):9640–9645

    Article  CAS  Google Scholar 

  84. Xu F, Wang D, Sa B, Yu Y, Mu S (2017) One-pot synthesis of Pt/CeO2/C catalyst for improving the ORR activity and durability of PEMFC. Int J Hydrogen Energy 42(18):13011–13019

    Article  CAS  Google Scholar 

  85. Roh C-W, Choi J, Lee H (2018) Hydrophilic-hydrophobic dual catalyst layers for proton exchange membrane fuel cells under low humidity. Electrochem Commun 97:105–109

    Article  CAS  Google Scholar 

  86. Zhao L, ** of noble metal-based catalysts for electrocatalysis. Nanoscale 13:11314–11324

    Article  Google Scholar 

  87. Li M, Wang H, Luo W, Sherrell PC, Chen J, Yang J (2020) Heterogeneous single-atom catalysts for electrochemical CO2 reduction reaction. Adv Mater 32(34):e2001848

    Article  Google Scholar 

  88. Liang Z, Shen J, Xu X, Li F, Liu J, Yuan B, Yu Y, Zhu M (2022) Advances in the development of single-atom catalysts for high-energy-density lithium-sulfur batteries. Adv Mater 34:e2200102

    Article  Google Scholar 

  89. Deng L, Qiu L, Hu R, Yao L, Zheng Z, Ren X, Li Y, He C (2022) Restricted diffusion preparation of fully-exposed Fe single-atom catalyst on carbon nanospheres for efficient oxygen reduction reaction. Appl Catal B 305:121058

    Article  CAS  Google Scholar 

  90. Hu S, Ni W, Yang D, Ma C, Zhang J, Duan J, Gao Y, Zhang S (2020) Fe3O4 nanoparticles encapsulated in single-atom Fe–N–C towards efficient oxygen reduction reaction: effect of the micro and macro pores. Carbon 162:245–255

    Article  CAS  Google Scholar 

  91. Gong X-F, Zhang Y-L, Zhao L, Dai Y-K, Cai J-J, Liu B, Guo P, Zhou Q-Y, Yagi I, Wang Z-B (2022) Zinc/graphitic carbon nitride co-mediated dual-template synthesis of densely populated Fe–Nx-embedded 2D carbon nanosheets towards oxygen reduction reactions for Zn–air batteries. J Mater Chem A 10(11):5971–5980

    Article  CAS  Google Scholar 

  92. Lu C, Chen Y, Yang Y, Chen X (2020) Single-atom catalytic materials for lean-electrolyte ultrastable lithium-sulfur batteries. Nano Lett 20(7):5522–5530

    Article  CAS  Google Scholar 

  93. Zhang W, Wang L, Zhang LH, Chen D, Zhang Y, Yang D, Yan N, Yu F (2022) Creating hybrid coordination environment in Fe-based single atom catalyst for efficient oxygen reduction. Chemsuschem 15(12):e202200195

    Google Scholar 

  94. Chen Z, Song J, Peng X, ** S, Liu J, Zhou W, Li R, Ge R, Liu C, Xu H, Zhao X, Li H, Zhou X, Wang L, Li X, Zhong L, Rykov AI, Wang J, Koh MJ, Loh KP (2021) Iron single atom catalyzed quinoline synthesis. Adv Mater 33(34):e2101382

    Article  Google Scholar 

  95. Liu Q, Wang Y, Hu Z, Zhang Z (2021) Iron-based single-atom electrocatalysts: synthetic strategies and applications. RSC Adv 11(5):3079–3095

    Article  CAS  Google Scholar 

  96. Yang S, Zhang T, Li G, Yang L, Lee JY (2017) Facile synthesis of N/M/O (M=Fe Co, Ni) doped carbons for oxygen evolution catalysis in acid solution. Ener Stor Mater 6:140–148

    Article  Google Scholar 

  97. Liang X, Li Z, **ao H, Zhang T, Xu P, Zhang H, Gao Q, Zheng L (2021) Two types of single-atom FeN4 and FeN5 electrocatalytic active centers on N-doped carbon driving high performance of the SA-Fe-NC oxygen reduction reaction catalyst. Chem Mater 33(14):5542–5554

    Article  CAS  Google Scholar 

  98. Zhong X, Yi W, Qu Y, Zhang L, Bai H, Zhu Y, Wan J, Chen S, Yang M, Huang L, Gu M, Pan H, Xu B (2020) Co single-atom anchored on Co3O4 and nitrogen-doped active carbon toward bifunctional catalyst for zinc-air batteries. Appl Catal B 260:118188

    Article  CAS  Google Scholar 

  99. Li H, Zhang M, Zhou W, Duan J, ** W (2021) Ultrathin 2D catalysts with N-coordinated single Co atom outside Co cluster for highly efficient Zn-air battery. Chem Eng J 421:129719

    Article  CAS  Google Scholar 

  100. Lian Z, Lu Y, Wang C, Zhu X, Ma S, Li Z, Liu Q, Zang S (2021) Single-atom Ru implanted on Co3O4 nanosheets as efficient dual-catalyst for Li-CO2 batteries. Adv Sci (Weinh) 8(23):e2102550

    Article  Google Scholar 

  101. Seyed Ali M, Mehdi M (2021) Fabrication of copper centered metal organic framework and nitrogen, sulfur dual doped graphene oxide composite as a novel electrocatalyst for oxygen reduction reaction. Energy 214:119053

    Article  Google Scholar 

  102. Taotao Z, Yanling Q, Pengfei Y, **anfeng L, Huamin Z (2019) Bi-modified Zn catalyst for efficient CO2 electrochemical reduction to formate. ACS Sustain Chem Eng 7(18):15190–15196

    Article  Google Scholar 

  103. Jie G, Chunlei W, Mei D, Guofu W, Zhikai L, Zhangfeng Q, Jianguo W, Weibin F (2019) Evolution of Zn species on Zn/HZSM-5 catalyst under H2 pretreated and its effect on ethylene aromatization. Chem Cat Chem 11(16):3892–3902

    Article  Google Scholar 

  104. Lingzhe M, Erhuan Z, Haoyu P, Yu W, Dingsheng W, Hongpan R, Jiatao Z (2022) Bi/Zn dual single-atom catalysts for electroreduction of CO2 to syngas. Chem Cat Chem 14(7):e202101801

    Google Scholar 

  105. Junqing L, Yu Z, Mingyuan Z, Lihua K (2020) A density functional theory exploration on the Zn catalyst for acetylene hydration. J Mol Model 26:105

    Article  Google Scholar 

  106. Zhen M, Vusala AA, Dilgam BT, Fedor IZ, Firudin IG, Kamran TM, Armando JLP (2020) Multinuclear Zn(II)-arylhydrazone complexes as catalysts for cyanosilylation of aldehydes. J Organomet Chem 912:121171

    Article  Google Scholar 

  107. Haijuan Z, **aoyan S, Bin T, Gang W, Baojun M, Wanyi L (2020) The performance of Cu/Zn/Zr catalysts of different Zr/(Cu+Zn) ratio for CO2 hydrogenation to methanol. Catal Commun 149:106264

    Google Scholar 

  108. Hao Z, Chen J, Zhang D, Zheng L, Li Y, Yin Z, He G, Jiao L, Wen Z, Lv X-J (2021) Coupling effects of Zn single atom and high curvature supports for improved performance of CO2 reduction. Sci Bullet 66(16):1649–1658

    Article  CAS  Google Scholar 

  109. Song CL, Li ZH, Ma LY, Li MZ, Huang S, Hong XJ, Cai YP, Lan YQ (2021) Single-atom zinc and anionic framework as janus separator coatings for efficient inhibition of lithium dendrites and shuttle effect. ACS Nano 15(8):13436–13443

    Article  CAS  Google Scholar 

  110. Kexi L, Zhi Q, Sooyeon H, Zhenyu L, Hanguang Z, Dong S, Hui X, Gang W, Guofeng W (2018) Mn- and N-doped carbon as promising catalysts for oxygen reduction reaction: theoretical prediction and experimental validation. Appl Catal B 243:195–203

    Google Scholar 

  111. Tian Z, Bikun Z, Qiong P, Jian Z, Zhimei S (2020) Mo2B2 MBene-supported single-atom catalysts as bifunctional HER/OER and OER/ORR electrocatalysts. J Mater Chem A 1(159):433–441

    Google Scholar 

  112. Qiangqiang G (2020) A DFT study of the ORR on M-N3 (M = Mn, Fe Co, Ni, or Cu) co-doped graphene with moiety-patched defects. Ionics 26:2453–2465

    Article  Google Scholar 

  113. Guangqi Z, Fan L, Yicheng W, Zidong W, Wei W (2019) Systematic exploration of N, C coordination effects on the ORR performance of Mn–Nx doped graphene catalysts based on DFT calculations†. Phys Chem Chem Phys 21:12826–12836

    Article  Google Scholar 

  114. Liu H, Zhu S, Cui Z, Li Z, Wu S, Liang Y (2021) Boosting oxygen reduction catalysis with abundant single atom tin active sites in zinc-air battery. J Power Sources 490:229483

    Article  CAS  Google Scholar 

  115. Luo E, Zhang H, Wang X, Gao L, Gong L, Zhao T, ** Z, Ge J, Jiang Z, Liu C, **ng W (2019) Single-atom Cr-N4 sites designed for durable oxygen reduction catalysis in acid media. Angew Chem Int Ed 131(36):12599–12605

    Article  Google Scholar 

  116. Xue Z, Zhang X, Qin J, Liu R (2021) Anchoring Mo on C9N4 monolayers as an efficient single atom catalyst for nitrogen fixation. J Ener Chem 57:443–450

    CAS  Google Scholar 

  117. Da Y, Jiang R, Tian Z, Han X, Chen W, Hu W (2022) The applications of single‐atom alloys in electrocatalysis: progress and challenges. Smart Mat 18. https://doi.org/10.1002/smm2.1136

  118. Wu D, Shen X, Pan Y, Yao L, Peng Z (2020) Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives. Chem Nano Mat 6(1):32–41

    Article  CAS  Google Scholar 

  119. Wu D, Shen X, Pan Y, Yao L, Peng Z (2019) Platinum alloy catalysts for oxygen reduction reaction: advances, challenges and perspectives. Chem Nano Mat 6(1):32–41

    Article  Google Scholar 

  120. Zhang L, Liu H, Liu S, Norouzi Banis M, Song Z, Li J, Yang L, Markiewicz M, Zhao Y, Li R, Zheng M, Ye S, Zhao Z-J, Botton GA, Sun X (2019) Pt/Pd single-atom alloys as highly active electrochemical catalysts and the origin of enhanced activity. ACS Catalysis 9(10):9350–9358

    Article  CAS  Google Scholar 

  121. Swami A, Patil I, Lokanathan M, Ingavale S, Kakade B (2020) Enhanced oxygen reduction reaction by Pd-Pt alloy catalyst with stabilized platinum skin. Chem Select 5(12):3486–3493

    Article  CAS  Google Scholar 

  122. Jiang J, Ding W, Li W, Wei Z (2020) Freestanding single-atom-layer pd-based catalysts: oriented splitting of energy bands for unique stability and activity. Chem 6(2):431–447

    Article  CAS  Google Scholar 

  123. Nam G, Park J, Choi M, Oh P, Park S, Kim MG, Park N, Cho J, Lee J-S (2015) Carbon-coated core–shell Fe–Cu nanoparticles as highly active and durable electrocatalysts for a Zn–Air battery. ACS Nano 9(6):6493–6501

    Article  CAS  Google Scholar 

  124. Niu L, Liu G, Li Y, An J, Zhao B, Yang J, Qu D, Wang X, An L, Sun Z (2021) CoNi alloy nanoparticles encapsulated in N-doped graphite carbon nanotubes as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium. ACS Sustain Chem Eng 9(24):8207–8213

    Article  CAS  Google Scholar 

  125. Chen W, Yu H, Chang S, Li W, Liu R, Wang Y, Zhang H, Zhang Z (2022) Wheat straw as carbon source to prepare FeCoP2/N, P dual-doped carbon matrix as bifunctional catalyst for application in rechargeable zinc-air and aluminum-air batteries. Appl Surf Sci 573:151486

    Article  CAS  Google Scholar 

  126. Lei L, Yameng L, Tao Z, Rao H, **nrui C, Tiane F, Yuhua W (2022) Exploring highly efficient dual-metal-site electrocatalysts for oxygen reduction reaction by first principles screening. J Electrochem Soc 169:026524

    Article  Google Scholar 

  127. Zou W, Lu R, Liu X, **ao G, Liao X, Wang Z, Zhao Y (2022) Theoretical insights into dual-atom catalysts for the oxygen reduction reaction: the crucial role of orbital polarization. J Mater Chem A 10:9150–9160

    Article  CAS  Google Scholar 

  128. Pedersen A, Barrio J, Li A, Jervis R, Brett DJL, Titirici MM, Stephens IEL (2021) Dual-metal atom electrocatalysts: theory, synthesis, characterization, and applications. Adv Energy Mater 12(3):2102715

    Article  Google Scholar 

  129. Zhang J, Huang Q-A, Wang J, Wang J, Zhang J, Zhao Y (2020) Supported dual-atom catalysts: preparation, characterization, and potential applications. Chin J Catal 41(5):783–798

    Article  CAS  Google Scholar 

  130. Liu J, Cao D, Xu H, Cheng D (2020) From double-atom catalysts to single-cluster catalysts: a new frontier in heterogeneous catalysis. Nano Select 2(2):251–270

    Article  Google Scholar 

  131. Li Z, Ren Q, Wang X, Chen W, Leng L, Zhang M, Horton JH, Liu B, Xu Q, Wu W, Wang J (2021) Highly active and stable palladium single-atom catalyst achieved by a thermal atomization strategy on an SBA-15 molecular sieve for semi-hydrogenation reactions. ACS Appl Mater Interfaces 13(2):2530–2537

    Article  CAS  Google Scholar 

  132. Zhifu W, Ya-Qiong S, Emiel JMH, **nlong T, Chenghang Y, Qin X (2019) Highly stable Pt3Ni nanowires tailored with trace Au for the oxygen reduction reaction. J Mater Chem A 7:26402–26409

    Article  Google Scholar 

  133. Wan XK, Samjeske G, Matsui H, Chen C, Muratsugu S, Tada M (2021) Ultrafine Pt-Ni nanoparticles in hollow porous carbon spheres for remarkable oxygen reduction reaction catalysis. Dalton Trans 50(20):6811–6822

    Article  CAS  Google Scholar 

  134. Li K, Zhang H, Zheng Y, Yuan G, Jia Q, Zhang S (2020) Catalytic preparation of carbon nanotubes from waste polyethylene using FeNi bimetallic nanocatalyst. Nanomaterials 10(8):1517

    Article  CAS  Google Scholar 

  135. **e D, Yu D, Hao Y, Han S, Li G, Wu X, Hu F, Li L, Chen HY, Liao YF, Peng S (2021) Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal–air batteries. Small 17(10):2007239

    Article  CAS  Google Scholar 

  136. Li X, Su Z, Zhao Z, Cai Q, Li Y, Zhao J (2021) Single Ir atom anchored in pyrrolic-N4 doped graphene as a promising bifunctional electrocatalyst for the ORR/OER: a computational study. J Colloid Interface Sci 607:1005–1013

    Article  Google Scholar 

  137. Sirirak R, Jarulertwathana B, Laokawee V, Susingrat W, Sarakonsri T (2016) FeNi alloy supported on nitrogen-doped graphene catalysts by polyol process for oxygen reduction reaction (ORR) in proton exchange membrane fuel cell (PEMFC) cathode. Res Chem Intermed 43(5):2905–2919

    Article  Google Scholar 

  138. Liu Y, Wu X, Guo X, Lee K, Sun Q, Li X, Zhang C, Wang Z, Hu J, Zhu Y, Leung MKH, Zhu Z (2020) Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts. Mater Today Ener 19:100610

    Article  Google Scholar 

  139. Samad S, Loh KS, Wong WY, Sudarsono W, Lee TK, Wan Daud WR (2020) Effect of various Fe/Co ratios and annealing temperatures on a Fe/Co catalyst supported with nitrogen-doped reduced graphene oxide towards the oxygen reduction reaction. J Alloys Compounds 816:152573

    Article  CAS  Google Scholar 

  140. Parkash A, Jia Z, Tian T, Ge Z, Yu C, Chunli X (2020) A new generation of platinum-copper electrocatalysts with ultra-low concentrations of platinum for oxygen-reduction reactions in alkaline media. Chem Select 5(11):3391–3397

    Article  CAS  Google Scholar 

  141. Xu J, Lai S, Qi D, Hu M, Peng X, Liu Y, Liu W, Hu G, Xu H, Li F, Li C, He J, Zhuo L, Sun J, Qiu Y, Zhang S, Luo J, Liu X (2021) Atomic Fe-Zn dual-metal sites for high-efficiency pH-universal oxygen reduction catalysis. Nano Res 14(5):1374–1381

    Article  CAS  Google Scholar 

  142. Gharibi H, Dalir N, Jafari M, Parnian MJ, Zhiani M (2022) Engineering dual metal single-atom sites with the nitrogen-coordinated nonprecious catalyst for oxygen reduction reaction (ORR) in acidic electrolyte. Appl Surf Sci 572:151367

    Article  CAS  Google Scholar 

  143. Shah SSA, Najam T, Javed MS, Bashir MS, Nazir MA, Khan NA, Rehman AU, Subhan MA, Rahman MM (2021) Recent advances in synthesis and applications of single-atom catalysts for rechargeable batteries. Chem Rec 22(7):e202100280

    Google Scholar 

  144. Zhu Y, Peng W, Li Y, Zhang G, Zhang F, Fan X (2019) Modulating the electronic structure of single-atom catalysts on 2D nanomaterials for enhanced electrocatalytic performance. Small Methods 3(9):1800438

    Article  Google Scholar 

  145. Lin L, Chen Z, Chen W (2021) Single atom catalysts by atomic diffusion strategy. Nano Res 14:4398–4416

    Article  CAS  Google Scholar 

  146. Zhang L, Zhao X, Yuan Z, Wu M, Zhou H (2021) Oxygen defect-stabilized heterogeneous single atom catalysts: preparation, properties and catalytic application. J Mater Chemis A 9:3855–3879

    Article  CAS  Google Scholar 

  147. Xue K, Mo Y, Long B, Wei W, Shan C, Guo S, Niu L (2022) Single-atom catalysts supported on ordered porous materials: synthetic strategies and applications. Info Mat 4(6):e12296

    Article  CAS  Google Scholar 

  148. Sołtys-Mróz M, Syrek K, Pierzchała J, Wiercigroch E, Malek K, Sulka GD (2020) Band gap engineering of nanotubular Fe2O3-TiO2 photoanodes by wet impregnation. Appl Surf Sci 517:146195

    Article  Google Scholar 

  149. Thayagaraja R, Cheng SY, Jones MI, Baroutian S (2020) Catalytic wet oxidation of glucose as model compound of wastewater over copper/rare earth oxides catalysts. J Water Process Eng 36:101251

    Article  Google Scholar 

  150. Li X, Wang Z, Feng R, Huang J, Fang Y (2021) A novel approach to prepare efficient CO2 sorbents derived from alumina-extracted residue of coal ash. J Environ Chem Eng 9(6):106373

    Article  CAS  Google Scholar 

  151. Zhang T, Zou B, Bi X, Li M, Wen J, Huo F, Amine K, Lu J (2019) Selective growth of a discontinuous subnanometer Pd film on carbon defects for Li–O2 batteries. ACS Energy Lett 4(12):2782–2786

    Article  CAS  Google Scholar 

  152. Zou X, Shen Z, Li X, Cao Y, **a Q, Zhang S, Liu Y, Jiang L, Li L, Cui L, Wang Y (2022) Boosting CO2 methanation on ceria supported transition metal catalysts via chelation coupled wetness impregnation. J Colloid Interface Sci 620:77–85

    Article  CAS  Google Scholar 

  153. Yi M, Li N, Lu B, Li L, Zhu Z, Zhang J (2021) Single-atom Pt decorated in heteroatom (N, B, and F)-doped ReS2 grown on Mo2CTx for efficient pH-universal hydrogen evolution reaction and flexible Zn–air batteries. Energy Storage Mater 42:418–429

    Article  Google Scholar 

  154. Qin M, Fan S, Li X, Tade MO, Liu S (2022) Electroreductive CO coupling of benzaldehyde over SACs Au-NiMn2O4 spinel synergetic composites. J Colloid Interface Sci 625:305–316

    Article  CAS  Google Scholar 

  155. Lu H-S, Zhang H, Zhang X, Sun N, Zhu X, Zhao H, Wang G (2018) Transformation of carbon-encapsulated metallic Co into ultrafine Co/CoO nanoparticles exposed on N-doped graphitic carbon for high-performance rechargeable zinc-air battery. Appl Surf Sci 448:369–379

    Article  CAS  Google Scholar 

  156. Keller L, Ohs B, Lenhart J, Abduly L, Blanke P, Wessling M (2018) High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon 126:338–345

    Article  CAS  Google Scholar 

  157. Salehi S, Anbia M (2018) Highly efficient CO2 capture with a metal–organic framework-derived porous carbon impregnated with polyethyleneimine. Appl Organomet Chem 32(7):e4390

    Article  Google Scholar 

  158. Slyemi S, Barama S, Barama A, Blanchard J, Messaoudi H, Casale S, Calers C (2018) Characterization and reactivity of VMgO catalysts prepared by wet impregnation and sol–gel methods. Chem Eng Commun 205(9):1288–1298

    Article  CAS  Google Scholar 

  159. Eskandari S, Tate G, Leaphart NR, Regalbuto JR (2018) Nanoparticle synthesis via electrostatic adsorption using incipient wetness impregnation. ACS Catal 8(11):10383–10391

    Article  CAS  Google Scholar 

  160. Beshkova M, Deminskyi P, Hsu CW, Shtepliuk I, Avramova I, Yakimova R, Pedersen H (2021) Atomic layer deposition of AlN on graphene Physica Status Solidi (A) -. Appl Mater Sci 218(17):2000684

    CAS  Google Scholar 

  161. Liu Z, Andrade AM, Grewal S, Nelson AJ, Thongrivong K, Kang H-S, Li H, Nasef Z, Diaz G, Lee MH (2021) Trace amount of ceria incorporation by atomic layer deposition in Co/CoOx-embedded N-doped carbon for efficient bifunctional oxygen electrocatalysis: demonstration and quasi-operando observations. Int J Hydrogen Energy 46(77):38258–38269

    Article  CAS  Google Scholar 

  162. Kim Y, Xu S, Park J, Dadlani AL, Vinogradova O, Krishnamurthy D, Orazov M, Lee DU, Dull S, Schindler P, Han HS, Wang Z, Graf T, Schladt TD, Mueller JE, Sarangi R, Davis R, Viswanathan V, Jaramillo TF, Higgins DC, Prinz FB (2022) Improving intrinsic oxygen reduction activity and stability: atomic layer deposition preparation of platinum-titanium alloy catalysts. Appl Catal B 300:120741

    Article  CAS  Google Scholar 

  163. Jiao S, Kong M, Hu Z, Zhou S, Xu X, Liu L (2022) Pt atom on the wall of atomic layer deposition (ALD)-made MoS2 nanotubes for efficient hydrogen evolution. Small 18(16):2105129

    Article  CAS  Google Scholar 

  164. Wang X, ** B, ** Y, Wu T, Ma L, Liang X (2020) Supported single Fe atoms prepared via atomic layer deposition for catalytic reactions. ACS Appl Nano Mater 3(3):2867–2874

    Article  CAS  Google Scholar 

  165. Lee M, Ahmad W, Kim DW, Kwon KM, Kwon HY, Jang H-B, Noh S-W, Kim D-H, Zaidi SJA, Park H, Lee HC, Abdul Basit M, Park TJ (2022) Powder coatings via atomic layer deposition for batteries: a review. Chem Mater 34(8):3539–3587

    Article  CAS  Google Scholar 

  166. Ko K-H, Park T-J, Sahajwalla V, Rawal A (2021) Complex microstructural evolution in high temperature pyrolysis of plastic and biomass. Fuel 291:120153

    Article  CAS  Google Scholar 

  167. Che Y, Wang Q, Huo J, Tian Y (2021) Determination of the sensitive fractions for vacuum residue high temperature fast pyrolysis. Fuel 299:120903

    Article  CAS  Google Scholar 

  168. Shen J, Wen Y, Jiang H, Yu S, Dong C, Fan Y, Liu B, Li C (2022) Identifying activity trends for the electrochemical production of H2O2 on M-N–C single-atom catalysts using theoretical kinetic computations. J Physic Chem C 126(25):10388–10398

    Article  CAS  Google Scholar 

  169. Chen YP, Zhang L, Feng JJ, Li XS, Wang AJ (2022) Water-regulated and bioinspired one-step pyrolysis of iron-cobalt nanoparticles-capped carbon nanotubes/porous honeycombed nitrogen-doped carbon composite for highly efficient oxygen reduction. J Colloid Interface Sci 618:352–361

    Article  CAS  Google Scholar 

  170. Ding S, Chen H-A, Mekasuwandumrong O, Hülsey MJ, Fu X, He Q, Panpranot J, Yang C-M, Yan N (2021) High-temperature flame spray pyrolysis induced stabilization of Pt single-atom catalysts. Appl Catal B 281:199471

    Article  Google Scholar 

  171. **e X, Peng L, Yang H, Waterhouse GIN, Shang L, Zhang T (2021) MIL-101-derived mesoporous carbon supporting highly exposed Fe single-atom sites as efficient oxygen reduction reaction catalysts. Adv Mater 33(23):e2101038

    Article  Google Scholar 

  172. Zhe-qin C, **ao-cong Z, Yong-min X, Jia-ming L, Zhi-feng X, Rui-xiang W (2021) A high-performance nitrogen-rich ZIF-8-derived Fe-NC electrocatalyst for the oxygen reduction reaction. J Alloy Compd 884:160980

    Article  Google Scholar 

  173. Yaengthip P, Siyasukh A, Payattikul L, Kiatsiriroat T, Punyawudho K (2022) The ORR activity of nitrogen doped-reduced graphene oxide below decomposition temperature cooperated with cobalt prepared by strong electrostatic adsorption technique. J Electroanal Chem 915:116366

    Article  CAS  Google Scholar 

  174. Xu X, Zhang X, **a Z, Sun R, Li H, Wang J, Yu S, Wang S, Sun G (2021) Solid phase microwave-assisted fabrication of Fe-doped ZIF-8 for single-atom Fe-N-C electrocatalysts on oxygen reduction. J Ener Chem 54:579–586

    CAS  Google Scholar 

  175. Liu S, Wang M, Yang X, Shi Q, Qiao Z, Lucero M, Ma Q, More KL, Cullen DA, Feng Z, Wu G (2020) Chemical vapor deposition for atomically dispersed and nitrogen coordinated single metal site catalysts. Angew Chem Int Ed Engl 59(48):21698–21705

    Article  CAS  Google Scholar 

  176. Zhong L, Jiang C, Zheng M, Peng X, Liu T, ** S, Chi X, Zhang Q, Gu L, Zhang S, Shi G, Zhang L, Wu K, Chen Z, Li T, Dahbi M, Alami J, Amine K, Lu J (2021) Wood carbon based single-atom catalyst for rechargeable Zn–Air batteries. ACS Energy Lett 6(10):3624–3633

    Article  CAS  Google Scholar 

  177. ** H, Sultan S, Ha M, Tiwari JN, Kim MG, Kim KS (2020) Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv Func Mater 30(25):2000531

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Contracts 51872162 and 11890702), Universities Twenty Foundational Items of **an City (2021GXRC039), and Qilu University of Technology (Shandong Academy of Sciences).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **aolong Xu or Yongzhong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Xu, X., Ai, Z. et al. Recent progresses in the single-atom catalysts for the oxygen reduction reaction. Ionics 29, 455–481 (2023). https://doi.org/10.1007/s11581-022-04842-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04842-7

Keywords

Navigation