Log in

Effect of Al-Mo codo** on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics

  • Original Papers
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Al-Mo codoped Li7La3Zr2O12 ceramics with fine grain were prepared by sol-gel method. The influences of Al-Mo codo** on the structure, microstructure, and conductivity of Li7La3Zr2O12 were investigated by X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), and impedance spectroscopy. The cubic phase Li7La3Zr2O12 has been stabilized by partial substitution of Al for Li and Mo for Zr. Li6.6-3yAlyLa3Zr1.8Mo0.2O12 (0 ≤ y ≤ 0.1) has been sintered at 1040–1060 °C for 3 h. The liquid sintering facilitated its densification. The relative density of the composition with x = 0.075 was approximately 96.4%. Results indicated that the Al-Mo codoped LLZO synthesized by sol-gel method effectively lowered its sintering temperature, accelerated densification, and improved the ionic conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ramakumar S, Deviannapoorani C, Dhivya L, Shankar LS, Murugan R (2017) Lithium garnets: Synthesis, structure, Li+ conductivity, Li+ dynamics and applications. Prog Mater Sci 88:325–411

    Article  CAS  Google Scholar 

  2. Murugan R, Thangadurai V, Weppner W (2007) Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew Chem Int Ed 34:437–440

    Google Scholar 

  3. Thangadurai V, Narayanan S, Pinzaru D (2014) Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem Soc Rev 43:4714–4727

    Article  CAS  Google Scholar 

  4. Rao RP, Gu W, Sharma N, Peterson VK, Avdeev M, Adams S (2015) In situ neutron diffraction monitoring of Li7La3Zr2O12formation: toward a rational synthesis of garnet solid electrolytes. Chem Mater 27:2903–2910

    Article  CAS  Google Scholar 

  5. Awaka J, Kijima N, Hayakawa H, Akimoto J (2009) Synthesis and structure analysis of tetragonal Li7La3Zr2O12 with the garnet-related type structure. J Solid State Chem 182:2046–2052

    Article  CAS  Google Scholar 

  6. Geiger CA, Alekseev E, Lazic B, Fisch M, Armbruster T, Langner R, Fechtelkord M, Kim N, Pettke T, Weppner W (2010) Crystal chemistry and stability of “Li7La3Zr2O12” garnet: a fast lithium-ion conductor. Inorg Chem 50:1089–1097

    Article  Google Scholar 

  7. Wagner R, Redhammer GJ, Rettenwander D, Tippelt G, Welzl A, Taibl S, Fleig J, Franz A, Lottermoser W, Amthauer G (2016) Fast Li-ion-conducting garnet-related Li7-3xFexLa3Zr2O12 with uncommon I4-3d structure. Chem Mater 28:5943–5941

    Article  CAS  Google Scholar 

  8. Afyon S, Krumeich F, Rupp JLM (2015) A shortcut to garnet-type fast Li-ion conductors for all solid state batteries. J Mater Chem A 3:18636–18648

    Article  CAS  Google Scholar 

  9. Robben L, Merzlyakova E, Heitjans P, Gesing TM (2016) Symmetry reduction due to Gallium substitution in the garnet Li6.43(2)Ga0.52(3)La2.67(4)Zr2O12. Acta Cryst E72:287–289

    Google Scholar 

  10. Wu JF, Chen EY, Yu Y, Liu L, Wu Y, Pang WK, Peterson VK, Guo X (2017) Gallium-doped Li7La3Zr2O12 garnet-type electrolytes with high lithium-ion conductivity. ACS Appl Mater Interfaces 9:1542–1552

    Article  CAS  Google Scholar 

  11. Deviannapoorani C, Shankar LS, Ramakumar S, Murugan R (2016) Investigation on lithium ion conductivity and structural stability of yttrium-substituted Li7La3Zr2O12. Ionics 22:1281–1289

    Article  CAS  Google Scholar 

  12. Yan B, Kotobuki M, Liu (2016) Ruthenium doped cubic-garnet structured solid electrolyte Li7La3Zr2−xRuxO12. Mater Technol 31:1–5

    CAS  Google Scholar 

  13. Trofimov AA, Li C, Brinkman KS, Jacobsohn LG (2017) Luminescence investigation of Ce incorporation in garnet-type Li7La3Zr2O12. Opt Mater 68:7–10

    Article  CAS  Google Scholar 

  14. Song S, Sheptyakov D, Korsunsky AM, Duong HM, Lu L (2016) High Li ion conductivity in a garnet-type solid electrolyte via unusual site occupation of the do** Ca ions. Mater Des 93:232–237

    Article  CAS  Google Scholar 

  15. Shao C, Yu Z, Liu H, Zheng Z, Sun N, Diao C (2017) Enhanced ionic conductivity of titanium doped Li7La3Zr2O12 solid electrolyte. Electrochim Acta 225:345–349

    Article  CAS  Google Scholar 

  16. Ohta S, Kobayashi T, Asaoka T (2011) High lithium ionic conductivity in the garnet-type oxideLi7−xLa3(Zr2−x,Nbx)O12 (x=0 - 2). J Power Sources 196:3342–3345

    Article  CAS  Google Scholar 

  17. Janani N, Ramakumar S, Kannan S, Murugan R (2015) Optimization of Lithium content and sintering aid for maximized Li+ conductivity and density in Ta-doped Li7La3Zr2O12. J Am Ceram Soc 98:2039–2046

    Article  CAS  Google Scholar 

  18. Ramakumar S, Satyanarayana L, Manorama SV, Murugan R (2013) Structure and Li+ dynamics of Sb-doped Li7La3Zr2O12 fast lithium ion conductors. Phys Chem Chem Phys 15:11327–11338

    Article  CAS  Google Scholar 

  19. **a W, Xu B, Duan H, Guo Y, Kang H, Li H, Liu H (2016) Ionic conductivity and air stability of Al-doped Li7La3Zr2O12 sintered in Alumina and Pt crucibles. Appl Mater Interfaces 8:5335–5342

    Article  CAS  Google Scholar 

  20. Rettenwander D, Welzl A, Cheng L, Fleig J, Musso M, Suard E, Doeff MM, Redhammer GJ, Amthauer G (2015) Synthesis, crystal chemistry, and electrochemical properties of Li7-2xLa3Zr2-xMoxO12 (x=0.1-0.4): Stabilization of the cubic garnet polymorph via substitution of Zr4+ by Mo6+. Inorg Chem 54:10440–10449

    Article  CAS  Google Scholar 

  21. Deviannapoorani C, Dhivya L, Ramakumar, Murugan R (2013) Lithium ion transport properties of high conductive tellurium substituted Li7La3Zr2O12 cubic lithium garnets. J Power Sources 240:18–25

    Article  CAS  Google Scholar 

  22. ** Y, McGinn PJ (2011) Al-doped Li7La3Zr2O12 synthesized by a polymerized complex method. J Power Sources 196:8683–8687

    Article  CAS  Google Scholar 

  23. Rangasamy E, Wolfenstine J, Sakamoto J (2012) The role of Al and Li concentration on the formation of cubic garnet solid electrolyte of nominal composition Li7La3Zr2O12. Solid State Ionics 206:28–32

    Article  CAS  Google Scholar 

  24. Düvel A, Kuhn A, Robben L, Wilkening M, Heitjans P (2012) Mechanosynthesis of solid electrolytes: preparation, characterization, and Li ion transport properties of garnet-type Al-doped Li7La3Zr2O12 crystallizing with cubic symmetry. J Phys Chem C 116:15192–15202

    Article  Google Scholar 

  25. El-Shinawi H, Paterson GW, MacLaren DA, Cussen EJ, Corr SA (2017) Low-temperature densification of Al-doped Li7La3Zr2O12: a reliable and controllable synthesis of fast-ion conducting garnets. J Mater Chem A 5:319–329

    Article  CAS  Google Scholar 

  26. Kumazaki S, Iriyama Y, Kim KH, Murugan R, Tanabe K, Yamamoto K, Hirayama T, Ogumi Z (2011) High lithium ion conductive Li7La3Zr2O12 by inclusion of both Al and Si. J Electrochem Commun 13:509–512

    Article  CAS  Google Scholar 

  27. Rettenwander D, Redhammer G, Preishuber-Pflugl F, Cheng L, Miara L, Wagner R, Welzl A, Suard E, Doeff MM, Wilkening M, Fleig J, Amthauer G (2016) Structural and electrochemical consequences of Al and Ga cosubstitution in Li7La3Zr2O12solid electrolytes. Chem Mater 28:2384–2392

    Article  CAS  Google Scholar 

  28. Wang D, Zhong G, Dolotko O, Li Y, Mcdonald M, Mi J, Fu R, Yang Y (2014) The synergistic effects of Al and Te on the structure and Li+-mobility of garnet-type solid electrolytes. J Mater Chem A 2:20271–20279

    Article  CAS  Google Scholar 

  29. Mukhopadhyay S, Thompson T, Sakamoto J, Huq A, Wolfenstine J, Allen JL, Bernstein N, Stewart DA, Johannes MD (2015) Structure and stoichiometry in supervalent doped Li7La3Zr2O12. Chem Mater 27:3658–3665

    Article  CAS  Google Scholar 

  30. Allen JL, Wolfenstine J, Rangasamy E, Sakamoto J (2012) Effect of substitution (Ta, Al, Ga) on the conductivity of Li7La3Zr2O12. J Power Sources 206:315–319

    Article  CAS  Google Scholar 

  31. Liu K, Ma JT, Wang CA (2014) Excess lithium salt functions more than compensating for lithium loss when synthesizing Li6.5La3Ta0.5Zr1.5O12 in alumina crucible. J Power Sources 260:109–114

    Article  CAS  Google Scholar 

  32. Ren Y, Deng H, Chen R, Shen Y, Lin Y, Nan CW (2015) Effects of Li source on microstructure and ionic conductivity of Al-contained Li6.75La3Zr1.75Ta0.25O12ceramics. J Eur Ceram Soc 35:561–572

    Article  CAS  Google Scholar 

  33. Kokal I, Somer M, Notten PHL, Hintzen HT (2011) Sol-gel synthesis and lithium ion conductivity of Li7La3Zr2O12 with garnet-related type structure. Solid State Ionics 185:42–46

    Article  CAS  Google Scholar 

  34. Shimonishi Y, Toda A, Zhang T, Hirano A, Imanishi N, Yamamoto O, Takeda Y (2011) Synthesis of garnet-type Li7-xLa3Zr2O12-1/2x and its stability in aqueous solutions. Solid State Ionics 183:48–53

    Article  CAS  Google Scholar 

  35. Janani N, Deviannapoorani C, Dhivya L, Murugan R (2014) Influence of sintering additives on densification and Li+ conductivity of Al doped Li7La3Zr2O12 lithium garnet. RSC Adv 4:51228–51238

    Article  CAS  Google Scholar 

  36. Takano R, Tadanaga K, Hayashi A, Tatsumisago M (2014) Low temperature synthesis of Al-doped Li7La3Zr2O12 solid electrolyte by a sol-gel process. Solid State Ionics 255:104–107

    Article  CAS  Google Scholar 

  37. Tadanaga K, Takano R, Ichinose T, Mori S, Hayashi A, Tatsumisago M (2013) Low temperature synthesis of highly ion conductive Li7La3Zr2O12-Li3BO3 composites. J Electrochem Commun 33:51–54

    Article  CAS  Google Scholar 

  38. Li Y, Wang Z, Li C, Cao Y, Guo X (2014) Densification and ionic-conduction improvement of lithium garnet solid electrolytes by flowing oxygen sintering. J Power Sources 248:642–646

    Article  CAS  Google Scholar 

  39. Wolfenstine J, Sakamoto J, Allen JL (2012) Electron microscopy characterization of hot-pressed Al substituted Li7La3Zr2O12. J Mater Sci 47:4428–4431

    Article  CAS  Google Scholar 

  40. Suzuki Y, Kami K, Watanabe K, Watanabe A, Saito N, Ohnishi T, Takada K, Sudo R, Imanishi N (2015) Transparent cubic garnet-type solid electrolyte of Al2O3-doped Li7La3Zr2O12. Solid State Ionics 278:172–176

    Article  CAS  Google Scholar 

  41. Amores M, Ashton TE, Baker PJ, Cussen EJ, Corr SA (2016) Fast microwave-assisted synthesis of Li-stuffed garnets and insights into Li diffusion from muon spin spectroscopy. J Mater Chem A 4:1729–1736

    Article  CAS  Google Scholar 

  42. Omori M (2000) Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater Sci Eng A 287:183–188

    Article  Google Scholar 

  43. Groza JR, Zavaliangos A (2000) Sintering activation by external electrical field. Mater Sci Eng A 287:171–177

    Article  Google Scholar 

  44. Nygren M, Shen Z (2003) On the preparation of bio-, nano- and structural ceramics and composites by spark plasma sintering. Solid State Sci 5:125–131

    Article  CAS  Google Scholar 

  45. Orru R, Licheri R, Locci AM, Cincotti A, Cao G (2009) Consolidation/synthesis of materials by electric current activated/assisted sintering. Mater Sci Eng R 63:127–287

    Article  Google Scholar 

  46. Räthel J, Herrmann M, Beckert W (2009) Temperature distribution for electrically conductive and non-conductive materials during field assisted sintering (FAST). J Eur Ceram Soc 29:1419–1425

    Article  Google Scholar 

  47. Baek SW, Lee JM, Kim TY, Song MS, Park Y (2014) Garnet related lithium ion conductor processed by spark plasma sintering for all solid state batteries. J Power Sources 249:197–206

    Article  CAS  Google Scholar 

  48. Ni JE, Case ED, Sakamoto JS, Rangasamy E, Wolfenstine JB (2012) Room temperature elastic moduli and Vickers hardness of hot-pressed LLZO cubic garnet. J Mater Sci 47:7978–7985

    Article  CAS  Google Scholar 

  49. Oudenhoven JFM, Baggetto L, Notten PHL (2011) Allsolidstate Lithiumion microbatteries: A review of various three-dimensional concepts. Adv Energy Mater 1:10–33

    Article  CAS  Google Scholar 

  50. Mccloskey BD (2015) Attainable gravimetric and volumetric energy density of Li-S and Li ion battery cells with solid separator-protected Li metal anodes. J Phys Chem Lett 6:4581–4588

    Article  CAS  Google Scholar 

  51. Cheng L, Hou H, Lux S, Kostecki R, Davis R, Zorba V, Mehta A, Doeff M (2017) Enhanced lithium ion transport in garnet-type solid state electrolytes. J Electroceram 38:168–175

    Article  CAS  Google Scholar 

  52. Kim Y, Jo H, Allen JL, Choe H, Wolfenstine J, Sakamoto J, Pharr G (2016) The effect of relative density on the mechanical properties of Hot-pressed cubic Li7La3Zr2O12. J Am Ceram Soc 99:1367–1374

    Article  CAS  Google Scholar 

  53. Il’ina EA, Andreev OL, Antonov BD, Batalov NN (2012) Morphology and transport properties of the solid electrolyte Li7La3Zr2O12 prepared by the solid-state and citrate-nitrate methods. J Power Sources 201:169–173

    Article  Google Scholar 

  54. Liu X, Li Y, Yang T, Cao Z, He W, Gao Y, Liu J, Li G, Li Z (2017) High lithium ionic conductivity in the garnet-type oxide Li7−2xLa3Zr2−xMoxO12 (x=0-0.3) ceramics by sol-gel method. J Am Ceram Soc 100:1527–1533

    Article  CAS  Google Scholar 

  55. Bottke P, Rettenwander D, Schmidt W, Amthauer G, Wilkening M (2015) Ion dynamics in solid electrolytes: NMR reveals the elementary steps of Li+ hop** in the garnet Li6.5La3Zr1.75Mo0.25O12. Chem Mater 27:6571–6582

    Article  CAS  Google Scholar 

  56. Gao YX, Wang XP, Lu H, Zhang LC, Ma L, Fang QF (2016) Mechanism of lithium ion diffusion in the hexad substitutedLi7La3Zr2O12 solid electrolytes. Solid State Ionics 291:1–7

    Article  CAS  Google Scholar 

  57. Chen F, Li J, Zhang Y, Yang D, Shen Q, Zhang L (2017) Effect of Mo6+ substitution on microstructure and lithium ionic conductivity of garnet-type Li7La3Zr2O12 solid electrolytes by field assisted sintering technology. In: Meyers M. et al. (eds) Proceedings of the 3rd pan american materials congress. The minerals, metals & materials series. Springer, Cham, pp. 115–122

    Google Scholar 

  58. Larson AC, Von Dreele RB (1994) General structure analysis system (GSAS), report LAUR. Los Alamos National Laboratory, Los Alamos, pp. 86–748

    Google Scholar 

  59. Toby BH (2001) EXPGUI, a graphical user interface for GSAS. J Appl Crystallogr 34:210–213

    Article  CAS  Google Scholar 

  60. Larraz G, Orera A, Sanjuán ML (2013) Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration. J Mater Chem A 1:11419–11428

    Article  CAS  Google Scholar 

  61. Julien C (2000) 4-Volt cathode materials for rechargeable lithium batteries wet-chemistry synthesis, structure and electrochemistry. Ionics 6:30–46

    Article  CAS  Google Scholar 

  62. Julien C, Massot M (2003) Lattice vibrations of materials for lithium rechargeable batteries I. Lithium manganese oxide spinel. Mater Sci Eng B 97:217–230

    Article  Google Scholar 

  63. Dhivya L, Murugan R (2014) Effect of simultaneous substitution of Y and Ta on the stabilization of cubic phase, microstructure, and Li+ conductivity of Li7La3Zr2O12 lithium garnet. ACS Appl Mater Interfaces 6:17606–17615

    Article  CAS  Google Scholar 

  64. Tietz F, Wegener T, Gerhards MT, Giarola M, Mariotto G (2013) Synthesis and Raman micro-spectroscopy investigation of Li7La3Zr2O12. Solid State Ionics 230:77–82

    Article  CAS  Google Scholar 

  65. Yang T, Li Y, Wu W, Cao Z, He W, Gao Y, Liu J, Li G (2018) The synergistic effect of dual substitution of Al and Sb on structure andionic conductivity of Li7La3Zr2O12 ceramic. Ceram Int 44:1538–1544

    Article  CAS  Google Scholar 

  66. Moser M, Klimm D, Ganschow S, Kwasniewski A, Jacobs K (2008) Re-determination of the pseudobinary system Li2O-MoO3. Cryst Res Technol 43:350–354

    Article  CAS  Google Scholar 

  67. Byker HJ, Eliezer I, Eliezer N, Howald RA (1979) Calculation of a Phase Diagram for the LiO0.5-A10.5 System. J Phys Chem C 83:2349–2355

    Article  CAS  Google Scholar 

  68. Rosero-Navarro NC, Yamashita T, Miura A, Higuchi M, Tadanaga K (2017) Effect of sintering additives on relative density and Li-ion conductivity of Nb-doped Li7La3ZrO12 solid electrolyte. J Am Ceram Soc 100:276–285

    Article  CAS  Google Scholar 

  69. Zhang LC, Yang JF, Gao YX, Wang XP, Fang QF, Chen CH (2017) Influence of Li3BO3 additives on the Li+ conductivity and stability of Ca/Ta-substituted Li6.55(La2.95Ca0.05)(Zr1.5Ta0.5)O12 electrolytes. J Power Sources 355:69–73

    Article  CAS  Google Scholar 

  70. Li Y, Han JT, Wang CA, **e H, Goodenough JB (2012) Optimizing Li+ conductivity in a garnet framework. J Mater Chem 22:15357

    Article  CAS  Google Scholar 

  71. Li C, Liu Y, He J, Brinkman KS (2017) Ga-substituted Li7La3Zr2O12: An investigation based on grain coarsening in garnet-type lithium ion conductors. J Alloys Compd 695:3744–3752

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Program for National Natural Science Foundation of China (No. 51562029), Program for Key Laboratory of Inorganic Function Material and Device, Chinese Academy of Sciences (KLIFMD-2011-01), and Program for Young Talents of Science and Technology in University of Inner Mongolia Autonomous Region (No. NJYT-17-A08).

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Yang, T., Wu, W. et al. Effect of Al-Mo codo** on the structure and ionic conductivity of sol-gel derived Li7La3Zr2O12 ceramics. Ionics 24, 3305–3315 (2018). https://doi.org/10.1007/s11581-018-2497-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2497-3

Keywords

Navigation