Log in

Enhanced lithium ion transport in garnet-type solid state electrolytes

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

Al-substituted Li7La3Zr2O12 samples processed under argon show enhanced Li-ion transport and interfacial properties in symmetrical cells with lithium electrodes, compared to those prepared in air. In particular, the samples prepared under argon have higher ionic conductivities and lower interfacial impedances in symmetrical lithium cells, and show better DC cycling characteristics. The electronic conductivities are also somewhat higher. Pellets subjected to thermal treatment under the two types of atmospheres have different colors but exhibit similar microstructures. X-ray diffraction experiments suggest that there are slight structural differences between the two types of samples, but few dissimilarities were observed in elemental composition, distribution of ions, oxidation states, or bond lengths using laser-induced breakdown spectroscopy (LIBS), x-ray photoelectron spectroscopy (XPS), and extended x-ray absorption fine structure spectroscopy (EXAFS) to analyze the materials. Additionally, there was no evidence that La or Zr were reduced during the processing under Ar. Possible explanations for the improved electrochemical properties of the sample prepared under Ar compared to the one prepared in air include differences in grain boundary chemistries and conductivities and/or a small concentration of oxygen vacancies in the former.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R. Murugan, V. Thangadurai, W. Weppner, Angew Chem 46, 7778 (2007). doi:10.1002/anie.200701144

    Article  Google Scholar 

  2. V. Thangadurai, S. Narayanan, D. Pinzaru, Chem Soc Rev 43, 4714 (2014). doi:10.1039/c4cs00020j

    Article  Google Scholar 

  3. J.B. Bates, N.J. Dudney, B. Neudecker, A. Ueda, C.D. Evans, Solid state. Ionics 135, 33 (2000)

    Article  Google Scholar 

  4. C. Cao, Z.-B. Li, X.-L. Wang, X.-B. Zhao, W.-Q. Han, Frontiers Energy Res, 2 (2014). doi:10.3389/fenrg.2014.00025

  5. J. van den Broek, S. Afyon, J.L.M. Rupp, Adv Energy Mater, 1600736 (2016). doi:10.1002/aenm.201600736

  6. Y. Lu, J.B. Goodenough, Journal of. Mater Chem 21, 10113 (2011). doi:10.1039/c0jm04222f

    Article  Google Scholar 

  7. S. EN, B.K. Visco, PolyPlus battery company (Berkeley CA, U.S., 2007)

    Google Scholar 

  8. C.A. Geiger, E. Alekseev, B. Lazic, et al., Inorg Chem 50, 1089 (2011). doi:10.1021/ic101914e

    Article  Google Scholar 

  9. T. Thompson, J. Wolfenstine, J.L. Allen, et al., J Mater Chem A 2, 13431 (2014). doi:10.1039/c4ta02099e

    Article  Google Scholar 

  10. D. Rettenwander, C.A. Geiger, M. Tribus, P. Tropper, G. Amthauer, Inorg Chem 53, 6264 (2014). doi:10.1021/ic500803h

    Article  Google Scholar 

  11. X. Tong, V. Thangadurai, E.D. Wachsman, Inorg Chem 54, 3600 (2015). doi:10.1021/acs.inorgchem.5b00184

    Article  Google Scholar 

  12. D. Rettenwander, A. Welzl, L. Cheng, et al., Inorg Chem 54, 10440 (2015). doi:10.1021/acs.inorgchem.5b01895

    Article  Google Scholar 

  13. D. Rettenwander, G. Redhammer, F. Preishuber-Pflugl, et al., Chem Mater: Pub Am Chem Soc 28, 2384 (2016). doi:10.1021/acs.chemmater.6b00579

    Article  Google Scholar 

  14. D. Rettenwander, C.A. Geiger, G. Amthauer, Inorg Chem 52, 8005 (2013). doi:10.1021/ic400589u

    Article  Google Scholar 

  15. S.R. Catarelli, D. Lonsdale, L. Cheng, J. Syzdek, M. Doeff, Frontiers Energy Res, 4 (2016). doi:10.3389/fenrg.2016.00014

  16. L Cheng, CH Wu, A Jarry, et al. (2015) ACS applied materials & interfaces 7: 17649. Doi:10.1021/acsami.5b02528

  17. WE Tenhaeff, E Rangasamy, Y Wang, et al. (2014) ChemElectroChem 1: 375. Doi:10.1002/celc.201300022

  18. S. Afyon, F. Krumeich, J.L.M. Rupp, J Mater Chem A 3, 18636 (2015). doi:10.1039/c5ta03239c

    Article  Google Scholar 

  19. L. Cheng, E.J. Crumlin, W. Chen, et al., Phys Chem Chem Phys 16, 18294 (2014). doi:10.1039/c4cp02921f

    Article  Google Scholar 

  20. A. Sharafi, H.M. Meyer, J. Nanda, J. Wolfenstine, J. Sakamoto, J Power Sources 302, 135 (2016). doi:10.1016/j.jpowsour.2015.10.053

    Article  Google Scholar 

  21. C.L. Tsai, V. Roddatis, C.V. Chandran, et al., ACS Appl Mater Interfaces 8, 10617 (2016). doi:10.1021/acsami.6b00831

    Article  Google Scholar 

  22. E. Yi, W. Wang, J. Kieffer, R.M. Laine, J Mater Chem A 4, 12947 (2016). doi:10.1039/c6ta04492a

    Article  Google Scholar 

  23. Y. Wang, P. Yan, J. **ao, X. Lu, J.-G. Zhang, V.L. Sprenkle, Solid State. Ionics 294, 108 (2016). doi:10.1016/j.ssi.2016.06.013

    Article  Google Scholar 

  24. Y. Ren, H. Deng, R. Chen, Y. Shen, Y. Lin, C.-W. Nan, J Eur Ceram Soc 35, 561 (2015). doi:10.1016/j.jeurceramsoc.2014.09.007

    Article  Google Scholar 

  25. L. Cheng, J.S. Park, H. Hou, et al., J Mater Chem A 2, 172 (2014). doi:10.1039/c3ta13999a

    Article  Google Scholar 

  26. Y. Li, Z. Wang, C. Li, Y. Cao, X. Guo, J Power Sources 248, 642 (2014). doi:10.1016/j.jpowsour.2013.09.140

    Article  Google Scholar 

  27. M. Kotobuki, K. Kanamura, Y. Sato, K. Yamamoto, T. Yoshida, J Power Sources 199, 346 (2012). doi:10.1016/j.jpowsour.2011.10.060

    Article  Google Scholar 

  28. W. Weppner, R.A. Huggins, Annu Rev Mater Sci 8, 269 (1978)

    Article  Google Scholar 

  29. S. Mukhopadhyay, T. Thompson, J. Sakamoto, et al., Chem Mater 27, 3658 (2015). doi:10.1021/acs.chemmater.5b00362

    Article  Google Scholar 

  30. M. Nyman, T.M. Alam, S.K. McIntyre, G.C. Bleier, D. Ingersoll, Chem Mater 22, 5401 (2010). doi:10.1021/cm101438x

    Article  Google Scholar 

  31. J. Wolfenstine, J.L. Allen, J. Read, J. Sakamoto, Journal of. Mater Sci 48, 5846 (2013). doi:10.1007/s10853-013-7380-z

    Article  Google Scholar 

  32. Y. **, P.J. McGinn, J Power Sources 196, 8683 (2011). doi:10.1016/j.jpowsour.2011.05.065

    Article  Google Scholar 

  33. A.A. Hubaud, D.J. Schroeder, B. Key, B.J. Ingram, F. Dogan, J.T. Vaughey, J Mater Chem A 1, 8813 (2013). doi:10.1039/c3ta11338h

    Article  Google Scholar 

  34. M. Amores, T.E. Ashton, P.J. Baker, E.J. Cussen, S.A. Corr, J Mater Chem A 4, 1729 (2016). doi:10.1039/c5ta08107f

    Article  Google Scholar 

  35. F. Tietz, T. Wegener, M.T. Gerhards, M. Giarola, G. Mariotto, Solid state. Ionics 230, 77 (2013). doi:10.1016/j.ssi.2012.10.021

    Article  Google Scholar 

  36. G. Larraz, A. Orera, M.L. Sanjuán, J Mater Chem A 1, 11419 (2013). doi:10.1039/c3ta11996c

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-76SF00515. The work of Huaming Hou was supported by National Science Foundation of China (grant no. 61605161). Vassilia Zorba acknowledges support from the Chemical Science Division, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marca Doeff.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L., Hou, H., Lux, S. et al. Enhanced lithium ion transport in garnet-type solid state electrolytes. J Electroceram 38, 168–175 (2017). https://doi.org/10.1007/s10832-017-0080-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-017-0080-3

Keywords

Navigation