Log in

Diffuse instability of granular material under various drainage conditions: discrete element simulation and constitutive modeling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Diffuse instability is a typical failure mode of sand that occurs before the perfect plastic flow condition is attained. Whereas extensive laboratory experiments have demonstrated the macro-scale responses associated with such a failure mode, its underlying microscopic mechanism remains unclear. Therefore, no effective predictions can be made incorporating sophisticated constitutive models of sand, particularly when various drainage conditions are considered. In the present study, diffuse instability is first investigated using the discrete element method (DEM). Herein, partially drained and fully drained conditions are imposed to investigate the instability failure in proportional strain loading and constant shear drained tests, respectively. Then, both macro- and micro-scale second-order work criteria are applied to identify the occurrence of instability. Furthermore, the main features associated with the onset of diffuse instability are presented. The diffuse instability behavior of sand is observed to be closely related to its fabric evolution. Eventually, independent criteria for diffuse instability under various drainage conditions are determined considering the DEM results. In addition, a newly developed anisotropic constitutive model with a fabric evolution law is applied to simulate the mechanical behavior of sand and the instability that ensues. The model exhibits satisfactory agreement with the DEM simulation results. Overall, this study is aimed at elucidating why diffuse instability occurs prior to the plastic limit and how to predict it under various drainage conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Alipour MJ, Lashkari A (2018) Sand instability under constant shear drained stress path. Int J Solids Struct 150:66–82

    Article  Google Scholar 

  2. Been K, Jefferies MG (1985) A state parameter for sands. Géotechnique 35(2):99–112

    Article  Google Scholar 

  3. Borja RI (2006) Condition for liquefaction instability in fluid-saturated granular soils. Acta Geotech 1(4):211–224

    Article  Google Scholar 

  4. Buscarnera G, Nova R (2011) Modelling instabilities in triaxial testing on unsaturated soil specimens. Int J Numer Anal Methods Geomech 35(2):179–200

    Article  MATH  Google Scholar 

  5. Chu J, Lo SCR, Lee IK (1993) Instability of granular soils under strain path testing. J Geotech Eng 119(5):874–892

    Article  Google Scholar 

  6. Chu J, Leroueil S, Leong WK (2003) Unstable behaviour of sand and its implication for slope instability. Can Geotech J 40(5):873–885

    Article  Google Scholar 

  7. Chu J, Leong WK, Loke WL, Wanatowski D (2012) Instability of loose sand under drained conditions. J Geotech Geoenviron Eng 138(2):207–216

    Article  Google Scholar 

  8. Cundall PA, Strack ODL (1979) A discrete numerical mode for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  9. Chambon R, Caillerie D (1999) Existence and uniqueness theorems for boundary value problems involving incrementally nonlinear models. Int J Solids Struct 36(33):5089–5099

    Article  MATH  Google Scholar 

  10. Darve F (1996) Liquefaction phenomenon of granular materials and constitutive stability. Eng Comput 13(7):5–28

    Article  MATH  Google Scholar 

  11. Darve F, Servant G, Laouafa F, Khoa HDV (2004) Failure in geo-materials: continuous and discrete analyses. Comput Method Appl M 193(27):3057–3085

    Article  MATH  Google Scholar 

  12. Dong QY, Xu CJ, Cai YQ, Juang H, Wang J, Yang ZX, Gu C (2016) Drained instability in loose granular material. Int J Geomech 16(2):04015043

    Article  Google Scholar 

  13. Daouadji A, Darve F, Gali HA, Hicher PY, Laouafa F, Lignon S, Nicot F, Nova R, Pinheiro M, Prunier F, Sibille L, Wan R (2011) Diffuse failure in geomaterials: experiments, theory and modelling. Int J Numer Anal Methods Geomech 35(16):1731–1773

    Article  Google Scholar 

  14. Eckersley D (1991) Instrumented laboratory flow slides. Géotechnique 41(2):277–279

    Article  Google Scholar 

  15. Hadda N, Nicot F, Bourrier F, Sibille L, Radjai F, Darve F (2013) Micromechanical analysis of second-order work in granular media. Granul Matter 15(2):221–235

    Article  Google Scholar 

  16. Hill R (1958) A general theory of uniqueness and stability in elastic-plastic solids. J Mech Phys Solids 6(3):236–249

    Article  MATH  Google Scholar 

  17. Imposimato S, Nova R (1998) An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sand. Mech Cohesive-Frict Mater 3(1):65–87

    Article  Google Scholar 

  18. Lade PV, Pradel D (1990) Instability and plastic flow of soils. I: Experimental observations. J Eng Mech-ASCE 116(11):2532–2550

    Article  Google Scholar 

  19. Lade PV, Liggio CD (2014) Stability and instability of granular materials under imposed volume changes: experiments and predictions. Int J Geomech 14(5):04014020

    Article  Google Scholar 

  20. Lade PV, Yamamuro JA (2011) Evaluation of static liquefaction potential of silty sand slopes. Can Geotech J 48:247–264

    Article  Google Scholar 

  21. Lancelot L, Shahrour I, Mahmoud MA (2004) Instability and static liquefaction on proportional strain paths for sand at low stresses. J Eng Mech-ASCE 130(11):1365–1372

    Article  Google Scholar 

  22. Lashkari A, Yaghtin MS (2018) Sand flow liquefaction instability under shear-volume coupled strain paths. Géotechnique 68(11):1002–1024

    Article  Google Scholar 

  23. Lashkari A, Khodadadi M, Binesh SM, Rahman MM (2019) Instability of particulate assemblies under constant shear drained stress path: DEM approach. Int J Geomech 19(6):04019049

    Article  Google Scholar 

  24. Li XS, Dafalias YF (2002) Constitutive modeling of inherently anisotropic sand behavior. J Geotech Geoenviron Eng 128(10):868–880

    Article  Google Scholar 

  25. Li XS, Dafalias YF (2012) Anisotropic critical state theory: role of fabric. J Eng Mech-ASCE 138(3):263–275

    Article  Google Scholar 

  26. Li XS, Wang Y (1998) Linear representation of steady-state line for sand. J Geotech Geoenviron Eng 124(12):1215–1217

    Article  Google Scholar 

  27. Lü XL, Qian JG, Huang MS (2017) Instability of sands under axisymmetric proportional strain and stress loadings. Eur J Environ Civ Eng 23:1–17

    Google Scholar 

  28. Jiang MD, Yang ZX, Barreto D, **e YH (2018) The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies. Granul Matter 20:80

    Article  Google Scholar 

  29. Jrad M, Sukumaran B, Daouadji A (2012) Experimental analyses of the behaviour of saturated granular materials during axisymmetric proportional strain paths. Eur J Environ Civ Eng 16(1):111–120

    Article  Google Scholar 

  30. Monkul MM, Yamamuro JA, Lade PV (2011) Failure, instability, and the second work increment in loose silty sand. Can Geotech J 48(6):943–955

    Article  Google Scholar 

  31. Mital U, Andrade JE (2016) Mechanics of origin of flow liquefaction instability under proportional strain triaxial compression. Acta Geotech 11(5):1015–1025

    Article  Google Scholar 

  32. Nakata Y, Hyodo M, Murata H, Yasufuku N (1998) Flow deformation of sands subjected to principal stress rotation. Soils Found 38(2):115–128

    Article  Google Scholar 

  33. Nicot F, Darve F (2011) Diffuse and localized failure modes: two competing mechanisms. Int J Numer Anal Methods Geomech 35(5):586–601

    Article  MATH  Google Scholar 

  34. Nicot F, Laouafa F, Darve F (2011) Second-order work, kinetic energy and diffuse failure in granular materials. Granul Matter 13(1):19–28

    Article  Google Scholar 

  35. Nicot F, Hadda N, Bourrier F, Sibille L, Wan R, Darve F (2012) Inertia effects as a possible missing link between micro and macro second-order work in granular media. Int J Solids Struct 49(10):1252–1258

    Article  Google Scholar 

  36. Ning Z, Evans MT, Andrade J (2013) Particulate study of drained diffuse instability in granular material. In: Proceedings of ASCE geo-congress 2013: stability and performance of slopes and embankments III, pp 1290–1299

  37. Nova R (1994) Controllability of the incremental response of soil specimens subjected to arbitrary loading programs. J Mech Behav Mater 5(2):193–202

    Article  Google Scholar 

  38. Nouguierlehon C, Cambou B, Vincens E (2010) Influence of particle shape and angularity on the behaviour of granular materials: a numerical analysis. Int J Numer Anal Methods Geomech 27(14):1207–1226

    Article  MATH  Google Scholar 

  39. Osinov VA, Wu W (2009) Wave speeds, shear bands and the second-order work for incrementally nonlinear constitutive models. Acta Mech 202(1–4):145–151

    Article  MATH  Google Scholar 

  40. Perez JCL, Kwok CY, Osullivan C, Huang X, Hanley KJ (2016) Exploring the micro-mechanics of triaxial instability in granular materials. Géotechnique 66(9):1–16

    Google Scholar 

  41. PFC3D 5.0 (2014) Users’ manual. Itasca Consulting Group, Minneapolis

  42. Ramos AM, Lizcano A, Andrade JE (2012) Modelling diffuse instabilities in sands under drained conditions. Géotechnique 62(6):471–478

    Article  Google Scholar 

  43. Rothenburg L, Selvadurai APS (1981) A micromechanical definition of the Cauchy stress tensor for particular media. In: Selvadurai A (ed) Mechanics of structured media. Elsevier, Amsterdam, pp 469–486

    Google Scholar 

  44. Rudnicki JW, Rice JR (1975) Conditions for the localization of deformation in pressure-sensitive dilatant materials. J Mech Phys Solids 23(6):371–394

    Article  Google Scholar 

  45. Sawicki A, Świdziński W (2010) Modelling the pre-failure instabilities of sand. Comput Geotech 37(6):781–788

    Article  Google Scholar 

  46. Sibille L, Nicot F, Donzé FV, Darve F (2007) Material instability in granular assemblies from fundamentally different models. Int J Numer Anal Methods Geomech 31(3):457–481

    Article  MATH  Google Scholar 

  47. Sivathayalan S, Logeswaran P (2007) Behaviour of sands under generalized drainage boundary conditions. Can Geotech J 44(2):138–150

    Article  Google Scholar 

  48. Sivathayalan S, Logeswaran P (2008) Experimental assessment of the response of sands under shear-volume coupled deformation. Can Geotech J 45(9):1310–1323

    Article  Google Scholar 

  49. Skopek P, Morgenstern NR, Robertson PK, Sego DC (1994) Collapse of dry sand. Can Geotech J 31(6):1008–1014

    Article  Google Scholar 

  50. Vardoulakis I, Sulem J (1995) Bifurcation analysis in geomechanics. Chapman and Hall Publications, London

    Google Scholar 

  51. Wanatowski D, Chu J (2007) Static liquefaction of sand in plane strain. Can Geotech J 44(3):299–313

    Article  Google Scholar 

  52. Weingartner B, Osinov VA, Wu W (2006) Acceleration wave speeds in a hypoplastic constitutive model. Int J Nonlinear Mech 41(8):991–999

    Article  Google Scholar 

  53. Wan R, Nicot F, Darve F (2017) Failure in geomaterials: a contemporary treatise, 1st edn. ISTP Press—Elsevier, London

    Google Scholar 

  54. Yoshimine M, Ishihara K (1998) Flow potential of sand during liquefaction. J Jpn Geotechn Soc 38(3):189–198

    Google Scholar 

  55. Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Founds 38(3):179–188

    Article  Google Scholar 

  56. Yang ZX, Wu Y (2017) Critical state for anisotropic granular materials: a discrete element perspective. Int J Geomech 17(2):04016054

    Article  Google Scholar 

  57. Yang ZX, Xu TT, Chen YN (2018) Unified modeling of the influence of consolidation conditions on monotonic soil response considering fabric evolution. J Eng Mech-ASCE 144(8):04018073

    Article  Google Scholar 

  58. Yang ZX, Yang J, Wang LZ (2013) Micro-scale modeling of anisotropy effects on undrained behavior of granular soils. Granul Matter 15(5):557–572

    Article  Google Scholar 

Download references

Acknowledgements

The research described was funded by the National Key R & D program of China (No. 2016YFC0800200) and the Natural Science Foundation of China (Grant Nos. 51825803, 51578499, 51761130078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Q.X., Xu, T.T. & Yang, Z.X. Diffuse instability of granular material under various drainage conditions: discrete element simulation and constitutive modeling. Acta Geotech. 15, 1763–1778 (2020). https://doi.org/10.1007/s11440-019-00885-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00885-9

Keywords

Navigation