Log in

Macro- and micro-scale behavior of inherently anisotropic sands under true triaxial loading paths considering partial drainage conditions

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The actual drainage conditions in situ will be neither perfectly drained or undrained but will be partially drained. In the meantime, granular material behavior is sensitive to the intermediate principal stress ratio b = (σ2−σ3)/(σ1−σ3). While the conventional triaxial behavior of granular material under partial drainage condition has been extensively investigated, true triaxial behavior of granular material under partial drainage condition has not been studied. In this study, a series of DEM simulations are conducted to investigate both the macro- and micro-scale behavior of sand, considering the combined effects of the partial drainage conditions and intermediate principal stress ratios (b = 0, 0.5, and 1.0). The initial fabric anisotropy is integrated into consideration, which is measured through a bedding plane angles α = 0°, 30°, 45°, 60°, and 90°. The second order work criterion is used to detect the occurrence of instability under different loading conditions. During the entire loading process, the internal structure evolutions of the granular assemblies are quantified through a contact-normal-based fabric tensor. The interplay between the external loading and the internal fabric evolution is analyzed in detail, which can provide useful insights into the macro-scale observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Sivathayalan, S., Logeswaran, P.: Behaviour of sands under generalized drainage boundary conditions. Can. Geotech. J. 44(2), 138–150 (2007)

    Google Scholar 

  2. Daouadji, A., Hicher, P.Y., Jrad, M., Sukumaran, B., Belouettar, S.: Experimental and numerical investigation of diffuse instability in granular materials using a microstructural model under various loading paths. Géotechnique 63(5), 368–381 (2013)

    Google Scholar 

  3. Chu, J., Wanatowski, D., Loke, W.L., Leong, W.K.: Pre-failure instability of sand under dilatancy rate-controlled conditions. Soils. Found. 55(2), 414–424 (2015)

    Google Scholar 

  4. Wu, Q.X., Xu, T.T., Yang, Z.X.: Diffuse instability of granular material under various drainage conditions: discrete element simulation and constitutive modeling. Acta. Geotech. 15, 17631778 (2020)

    Google Scholar 

  5. Wan, R., Nicot, F., Darve, F.: Failure in geomaterials: a contemporary treatise, 1st edn. ISTP Press—Elsevier, London (2017)

  6. Sivathayalan, S., Logeswaran, P.: Experimental assessment of the response of sands under shear–volume coupled deformation. Can. Geotech. J. 45(9), 1310–1323 (2008)

    Google Scholar 

  7. Daouadji, A., Darve, F., Al Gali, H., Hicher, P.Y., Laouafa, F., Lignon, S., Wan, R.: Diffuse failure in geomaterials: experiments, theory, and modeling. Int. J. Numer. Anal. Meth. Geomech. 35(16), 1731–1773 (2011)

    Google Scholar 

  8. Daouadji, A., Jrad, M., Robin, G., Brara, A., Daya, E.M.: Phase transformation states of loose and dense granular materials under proportional strain loading. J. Eng. Mech. 143(1), C4016007 (2017)

    Google Scholar 

  9. Barreto, D., O’Sullivan, C.: The influence of inter-particle friction and intermediate stress ratio on soil response under generalized stress conditions. Granul. Matter. 14, 505521 (2012)

    Google Scholar 

  10. Abelev, A.V., Lade, P.V.: Effects of cross anisotropy on three-dimensional behavior of sand. I: stress-strain behavior and shear banding. J. Eng. Mech. 129(2), 160–166 (2003)

  11. Lade, P.V., Abelev, A.V.: Effects of cross anisotropy on three-dimensional behavior of sand. II: Volume change behavior and failure. J. Eng. Mech. 129(2), 167–174 (2003)

  12. Lade, P.V.: Failure criterion for cross-anisotropic soils. J. Geotech. Geoenviron. Eng. 134(1), 117–124 (2008)

    Google Scholar 

  13. Rodriguez, N.M., Lade, P.V.: True triaxial tests on cross-anisotropic deposits of fine Nevada sand. Int. J. Geomech. 13(6), 779–793 (2013)

    Google Scholar 

  14. Yoshimine, M., Ishihara, K., Vargas, W.: Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils. Found. 38(3), 179–188 (1998)

    Google Scholar 

  15. Uthayakumar, M., Vaid, Y.P.: Static liquefaction of sands under multiaxial loading. Can. Geotech. J. 35(2), 273–283 (1998)

    Google Scholar 

  16. Nakata, Y., Hyodo, M., Murata, H., Yasufuku, N.: Flow deformation of sands subjected to principal stress rotation. Soils. Found. 38(2), 115–128 (1998)

    Google Scholar 

  17. Li, X., Yu, H.S.: Influence of loading direction on the behavior of anisotropic granular materials. Int. J. Eng. Sci. 47(11–12), 1284–1296 (2009)

    Google Scholar 

  18. **e, Y.H., Yang, Z.X., Barreto, D., Jiang, M.D.: The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials. Granul. Matter. 19(2), 35 (2017)

    Google Scholar 

  19. Jiang, M.D., Yang, Z.X., Barreto, D., **e, Y.H.: The influence of particle-size distribution on critical state behavior of spherical and non-spherical particle assemblies. Granul. Matter. 20(4), 80 (2018)

    Google Scholar 

  20. Lü, X.L., Qian, J.G., Huang, M.S.: Instability of sands under axisymmetric proportional strain and stress loadings. Eur. J. Environ. Civ. Eng. 23, 1–17 (2017)

    Google Scholar 

  21. Lashkari, A., Yaghtin, M.S.: Sand flow liquefaction instability under shear-volume coupled strain paths. Géotechnique 68(11), 1002–1024 (2018)

    Google Scholar 

  22. Jiang, M.J., Konrad, J.M., Leroueil, S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Google Scholar 

  23. Holtzman, R., Silin, D.B., Patzek, T.W.: Mechanical properties of granular materials: A variational approach to grain-scale simulations. Int. J. Numer. Anal. Meth. Geomech. 33(3), 391–404 (2009)

    Google Scholar 

  24. Belheine, N., Plassiard, J.P., Donzé, F.V., Darve, F., Seridi, A.: Numerical simulation of drained triaxial test using 3D discrete element modeling. Comput. Geotech. 36(1–2), 320–331 (2009)

    Google Scholar 

  25. Tong, Z.X., Fu, P., Dafalias, Y.F., Yao, Y.P.: Discrete element method analysis of non-coaxial flow under rotational shear. Int. J. Numer. Anal. Meth. Geomech. 38(14), 1519–1540 (2014)

    Google Scholar 

  26. Binesh, S.M., Eslami-Feizabad, E., Rahmani, R.: Discrete element modeling of drained triaxial test: flexible and rigid lateral boundaries. Int. J. Civil Eng. 16, 1463–1474 (2018)

    Google Scholar 

  27. Wu, Q.X., Yang, Z.X.: Novel undrained servomechanism in discrete-element modeling and its application in multidirectional cyclic shearing simulations. J. Eng. Mech. 147(3), 04020155 (2021)

    Google Scholar 

  28. Qu, T., Wang, M., Feng, Y.: Applicability of discrete element method with spherical and clumped particles for constitutive study of granular materials. J. Rock Mech. Geotech. Eng. 14(1), 240–251 (2022)

    Google Scholar 

  29. Wu, Q.X., Yang, Z.X.: Unified discrete-element approach applying arbitrary undrained loading paths in element testing for granular soils. Int. J. Numer. Anal. Meth. Geomech. 47, 3–22 (2023)

    Google Scholar 

  30. Li, X.S., Dafalias, Y.F.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012)

    Google Scholar 

  31. Zhao, C.F., Kruyt, N.P.: An evolution law for fabric anisotropy and its application in micromechanical modelling of granular materials. Int. J. Solids Struct. 196, 53–66 (2020)

    Google Scholar 

  32. Yang, Z.X., Xu, T.T., Chen, Y.N.: Unified modeling of the influence of consolidation conditions on monotonic soil response considering fabric evolution. J. Eng. Mech. 144(8), 04018073 (2018)

    Google Scholar 

  33. Wan, R.G., Guo, P.J.: Stress dilatancy and fabric dependencies on sand behavior. J. Eng. Mech. 130(6), 635–645 (2004)

    Google Scholar 

  34. Lashkari, A., Latifi, M.: A non-coaxial constitutive model for sand deformation under rotation of principal stress axes. Int. J. Numer. Anal. Methods 32(9), 1051–1086 (2008)

    Google Scholar 

  35. Fang, H., Shen, Y., Zhao, Y.: Multishear bounding surface modelling of anisotropic sands accounting for fabric and its evolution. Comput. Geotech. 110, 57–70 (2019)

    Google Scholar 

  36. Yang, Z.X., Liao, D., Xu, T.T.: A hypoplastic model for granular soils incorporating anisotropic critical state theory. Int. J. Numer. Anal. Meth. Geomech. 44(6), 723–748 (2020)

    Google Scholar 

  37. Tian, Y., Yao, Y.P.: Constitutive modeling of principal stress rotation by considering inherent and induced anisotropy of soils. Acta Geotech. 13(6), 1299–1311 (2018)

    Google Scholar 

  38. Wang, R., Cao, W., Xue, L., Zhang, J.M.: An anisotropic plasticity model incorporating fabric evolution for monotonic and cyclic behavior of sand. Acta Geotech. 16, 43–65 (2021)

    Google Scholar 

  39. Pan, K., Xu, T.T., Liao, D., Yang, Z.X.: Failure mechanisms of sand under asymmetrical cyclic loading conditions: experimental observation and constitutive modelling. Géotechnique 72(2), 162–175 (2022)

    Google Scholar 

  40. Liao, D., Yang, Z.X.: Hypoplastic modeling of anisotropic sand behavior accounting for rotation of principal stress direction. J. Eng. Mech. 148(10), 04022060 (2022)

    Google Scholar 

  41. Itasca Consulting Group, Inc.: PFC manual, version 5.0. Minneapolis (2015)

  42. Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Google Scholar 

  43. Polakowski, C., Sochan, A., Bieganowski, A., Ryzak, M., Foldenyi, R., Toth, J.: Influence of the sand particle shape on particle size distribution measured by laser diffraction method. Int. Agrophys. 28(2), 195–200 (2014)

  44. Liu, J., Otsubo, M., Kawaguchi, Y., Kuwano, R.: Anisotropy in small-strain shear modulus of granular materials: Effects of particle properties and experimental conditions. Soils Found. 62(1), 101105 (2022)

    Google Scholar 

  45. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y., Wadee, M.A.: DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials. Granul. Matter. 16, 641655 (2014)

    Google Scholar 

  46. Gu, X.Q., Zhang, J.C., Huang, X.: DEM analysis of monotonic and cyclic behaviors of sand based on critical state soil mechanics framework. Comput. Geotech. 128, 103787 (2020)

    Google Scholar 

  47. Yang, D.S.: Microscopic study of granular material behaviors under general stress paths. (Doctoral dissertation, University of Nottingham, UK) (2014)

  48. Li, X., Yang, D., Yu, H.S.: Macro deformation and micro structure of 3D granular assemblies subjected to rotation of principal stress axes. Granul. Matter. 18, 1–20 (2016)

    ADS  Google Scholar 

  49. Li, X., Yu, H.S., Li, X.S.: A virtual experiment technique on the elementary behaviour of granular materials with discrete element method. Int. J. Numer. Anal. Meth. Geomech. 37(1), 75–96 (2013)

    ADS  Google Scholar 

  50. Nicot, F., Challamel, N., Lerbet, J., Prunier, F., Darve, F.: Some insights into structure instability and the second-order work criterion. Int. J. Solids Struct. 49(1), 132–142 (2012)

    Google Scholar 

  51. Liao, D., Yang, Z.X.: Non-coaxial hypoplastic model for sand with evolving fabric anisotropy including non-proportional loading. Int. J. Numer. Anal. Meth. Geomech. 45(16), 2433–2463 (2021)

    Google Scholar 

  52. Kanatani, K.I.: Distribution of directional data and fabric tensors. Int. J. Eng. Sci. 22(2), 149–164 (1984)

    MathSciNet  Google Scholar 

  53. Yang, Z.X., Wu, Y.: Critical state for anisotropic granular materials: A discrete element perspective. Int. J. Geomech. 17(2), 04016054 (2017)

    Google Scholar 

Download references

Acknowledgements

This research is supported by the Natural Science Foundation of China (Grant No. 52208366 and 52078236) and the Department of Science and Technology of Hubei Province (Grant No. 2023AFB578). The authors gratefully acknowledge the financial supports.

Funding

National Natural Science Foundation of China,52208366,Qixin Wu,52078236,Jun-Jie ZHENG,Department of Science and Technology,Hubei Provincial People's Government,2023AFB578,Qixin Wu

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun-jie Zheng or Qixin Wu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji, S., Zheng, Jj. & Wu, Q. Macro- and micro-scale behavior of inherently anisotropic sands under true triaxial loading paths considering partial drainage conditions. Granular Matter 26, 30 (2024). https://doi.org/10.1007/s10035-024-01400-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-024-01400-y

Keywords

Navigation