Log in

Design strategy of optical probes for tumor hypoxia imaging

  • Review
  • Published:
Science China Life Sciences Aims and scope Submit manuscript

Abstract

Clinical manifestations of tumors indicate that malignant phenotypes develo** in the hypoxic microenvironment lead to resistance to cancer treatment, rendering chemotherapy, radiotherapy, and photodynamic therapy less sensitive and effective in patients with tumor. Visualizing the oxygen level in the tumor environment has garnered much attention due to its implications in precision tumor therapy. Following the rapid development of biomaterials in nanotechnology, various nanomaterials have been designed to visualize the oxygen levels in tumors. Here, we review recent research on detecting oxygen levels in solid tumors for tumor hypoxia imaging. To monitor the hypoxic level of tumors, two main strategies were investigated: directly detecting oxygen levels in tumors and monitoring the hypoxia-assisted reduced microenvironment. We believe that hypoxia as a tumor-specific microenvironment can be a breakthrough in the clinical treatment of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albini, A., and Sporn, M.B. (2007). The tumour microenvironment as a target for chemoprevention. Nat Rev Cancer 7, 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Anastasiadis, A.G., Stisser, B.C., Ghafar, M.A., Burchardt, M., and Buttyan, R. (2002). Tumor hypoxia and the progression of prostate cancer. Curr Urol Rep 3, 222–228.

    Article  PubMed  Google Scholar 

  • Balkwill, F.R., Capasso, M., and Hagemann, T. (2012). The tumor microenvironment at a glance. J Cell Sci 125, 5591–5596.

    Article  CAS  PubMed  Google Scholar 

  • Banchereau, J., and Palucka, A.K. (2005). Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol 5, 296–306.

    Article  CAS  PubMed  Google Scholar 

  • Bastiaens, P., and Squire, A. (1999). Fluorescence lifetime imaging microscopy: spatial resolution of biochemical processes in the cell. Trends Cell Biol 9, 48–52.

    Article  CAS  PubMed  Google Scholar 

  • Becker, W. (2012). Fluorescence lifetime imaging—techniques and applications. J Microsc 247, 119–136.

    Article  CAS  PubMed  Google Scholar 

  • Berezin, M.Y., and Achilefu, S. (2010). Fluorescence lifetime measurements and biological imaging. Chem Rev 110, 2641–2684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergman, I. (1968). Rapid-response atmospheric oxygen monitor based on fluorescence quenching. Nature 218, 396.

    Article  CAS  Google Scholar 

  • Brown, J.M., and Giaccia, A.J. (1998). The unique physiology of solid tumors: opportunities (and problems) for cancer therapy. Cancer Res 58, 1408–1416.

    CAS  PubMed  Google Scholar 

  • Brown, J.M., and Wilson, W.R. (2004). Exploiting tumour hypoxia in cancer treatment. Nat Rev Cancer 4, 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Cao, P., Deng, Z., Wan, M., Huang, W., Cramer, S.D., Xu, J., Lei, M., and Sui, G. (2010). MicroRNA-101 negatively regulates Ezh2 and its expression is modulated by androgen receptor and HIF-1α/HIF-1β. Mol Cancer 9, 108.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerqueira, B.B.S., Lasham, A., Shelling, A.N., and Al-Kassas, R. (2015). Nanoparticle therapeutics: technologies and methods for overcoming cancer. Eur J Pharm Biopharm 97, 140–151.

    Article  CAS  PubMed  Google Scholar 

  • Chen, S.H., Forrester, W., and Lahav, G. (2016). Schedule-dependent interaction between anticancer treatments. Science 351, 1204–1208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chevalier, A., Zhang, Y., Khdour, O.M., Kaye, J.B., and Hecht, S.M. (2016). Mitochondrial nitroreductase activity enables selective imaging and therapeutic targeting. J Am Chem Soc 138, 12009–12012.

    Article  CAS  PubMed  Google Scholar 

  • Dai, Y., Xu, C., Sun, X., and Chen, X. (2017). Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 46, 3830–3852.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis, M.E., Chen, Z.G., and Shin, D.M. (2008). Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7, 771–782.

    Article  CAS  PubMed  Google Scholar 

  • Denko, N.C. (2008). Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer 8, 705–713.

    Article  CAS  PubMed  Google Scholar 

  • Denko, N.C., Fontana, L.A., Hudson, K.M., Sutphin, P.D., Raychaudhuri, S., Altman, R., and Giaccia, A.J. (2003). Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22, 5907–5914.

    Article  CAS  PubMed  Google Scholar 

  • Denny, W.A. (2010). Hypoxia-activated prodrugs in cancer therapy: progress to the clinic. Future Oncology 6, 419–428.

    Article  CAS  PubMed  Google Scholar 

  • Dong, J., Xu, J., Wang, X., and **, B. (2016). Influence of the interaction between long noncoding RNAs and hypoxia on tumorigenesis. Tumor Biol 37, 1379–1385.

    Article  CAS  Google Scholar 

  • Ding, Y., Wang, R., Zhang, J., Zhao, A., Lu, H., Li, W., Wang, C., and Yuan, X. (2019). Potential regulation mechanisms of P-gp in the bloodbrain barrier in hypoxia. Curr Pharm Des 25, 1041–1051.

    Article  CAS  PubMed  Google Scholar 

  • Erler, J.T., Bennewith, K.L., Nicolau, M., Dornhöfer, N., Kong, C., Le, Q. T., Chi, J.T.A., Jeffrey, S.S., and Giaccia, A.J. (2006). Lysyl oxidase is essential for hypoxia-induced metastasis. Nature 440, 1222–1226.

    Article  CAS  PubMed  Google Scholar 

  • Finikova, O.S., Lebedev, A.Y., Aprelev, A., Troxler, T., Gao, F., Garnacho, C., Muro, S., Hochstrasser, R.M., and Vinogradov, S.A. (2008). Oxygen microscopy by two-photon-excited phosphorescence. ChemPhysChem 9, 1673–1679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao, M., Yu, F., Lv, C., Choo, J., and Chen, L. (2017). Fluorescent chemical probes for accurate tumor diagnosis and targeting therapy. Chem Soc Rev 46, 2237–2271.

    Article  CAS  PubMed  Google Scholar 

  • Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K., and Nie, S. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22, 969–976.

    Article  CAS  PubMed  Google Scholar 

  • Gilkes, D.M., Semenza, G.L., and Wirtz, D. (2014). Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14, 430–439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hida, K., Ohga, N., Akiyama, K., Maishi, N., and Hida, Y. (2013). Heterogeneity of tumor endothelial cells. Cancer Sci 104, 1391–1395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Höckel, M., Schlenger, K., Knoop, C., and Vaupel, P. (1991). Oxygenation of carcinomas of the uterine cervix: evaluation by computerized O2 tension measurements. Cancer Res 51, 6098–6102.

    PubMed  Google Scholar 

  • Horsman, M.R., Mortensen, L.S., Petersen, J.B., Busk, M., and Overgaard, J. (2012). Imaging hypoxia to improve radiotherapy outcome. Nat Rev Clin Oncol 9, 674–687.

    Article  CAS  PubMed  Google Scholar 

  • Junttila, M.R., and de Sauvage, F.J. (2013). Influence of tumour microenvironment heterogeneity on therapeutic response. Nature 501, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Khawar, I.A., Kim, J.H., and Kuh, H.J. (2015). Improving drug delivery to solid tumors: priming the tumor microenvironment. J Control Release 201, 78–89.

    Article  CAS  PubMed  Google Scholar 

  • Kiyose, K., Hanaoka, K., Oushiki, D., Nakamura, T., Kajimura, M., Suematsu, M., Nishimatsu, H., Yamane, T., Terai, T., Hirata, Y., et al. (2010). Hypoxia-sensitive fluorescent probes for in vivo real-time fluorescence imaging of acute ischemia. J Am Chem Soc 132, 15846–15848.

    Article  CAS  PubMed  Google Scholar 

  • Kizaka-Kondoh, S., Inoue, M., Harada, H., and Hiraoka, M. (2003). Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94, 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Lammers, T., Kiessling, F., Ashford, M., Hennink, W., Crommelin, D., and Storm, G. (2016). Cancer nanomedicine: is targeting our target? Nat Rev Mater 1, 16069.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leithner, K., Wohlkoenig, C., Stacher, E., Lindenmann, J., Hofmann, N.A., Gallé, B., Guelly, C., Quehenberger, F., Stiegler, P., Smolle-Jüttner, F. M., et al. (2014). Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model—role of tumor stroma cells. BMC Cancer 14, 40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, B., Gu, Z., Kurniawan, N., Chen, W., and Xu, Z.P. (2017). Manganesebased layered double hydroxide nanoparticles as a T1-MRI contrast agent with ultrasensitive pH response and high relaxivity. Adv Mater 29, 1700373.

    Article  CAS  Google Scholar 

  • Li, J., Fan, C., Pei, H., Shi, J., and Huang, Q. (2013a). Smart drug delivery nanocarriers with self-assembled DNA nanostructures. Adv Mater 25, 4386–4396.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Yuan, Y., Zeng, G., Li, X., Yang, Z., Li, X., Jiang, R., Hu, W., Sun, P., Wang, Q., et al. (2016). A water-soluble conjugated polymer with azobenzol side chains based on “turn-on” effect for hypoxic cell imaging. Polym Chem 7, 6890–6894.

    Article  CAS  Google Scholar 

  • Li, Y., Sun, Y., Li, J., Su, Q., Yuan, W., Dai, Y., Han, C., Wang, Q., Feng, W., and Li, F. (2015). Ultrasensitive near-infrared fluorescenceenhanced probe for in vivo nitroreductase imaging. J Am Chem Soc 137, 6407–6416.

    Article  CAS  PubMed  Google Scholar 

  • Li, Z., Gao, X., Shi, W., Li, X., and Ma, H. (2013b). 7-((5-Nitrothiophen-2- l)methoxy)-3H-phenoxazin-3-one as a spectroscopic off-on probe for highly sensitive and selective detection of nitroreductase. Chem Commun 49, 5859–5861.

    Article  CAS  Google Scholar 

  • Lin, Q., Bao, C., Yang, Y., Liang, Q., Zhang, D., Cheng, S., and Zhu, L. (2013). Highly discriminating photorelease of anticancer drugs based on hypoxia activatable phototrigger conjugated chitosan nanoparticles. Adv Mater 25, 1981–1986.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Jiang, Y., Zhang, M., Tang, Z., He, M., and Bu, W. (2018a). Modulating hypoxia via nanomaterials chemistry for efficient treatment of solid tumors. Acc Chem Res 51, 2502–2511.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Song, X., Wang, X., Wei, L., Liu, X., Yuan, S., and Lv, L. (2010). Effect of chronic intermittent hypoxia on biological behavior and hypoxia-associated gene expression in lung cancer cells. J Cell Biochem 111, 554–563.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Teng, L., Chen, L., Ma, H., Liu, H.W., and Zhang, X.B. (2018b). Engineering of a near-infrared fluorescent probe for real-time simultaneous visualization of intracellular hypoxia and induced mitophagy. Chem Sci 9, 5347–5353.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloberas, N., Rama, I., Llaudó, I., Torras, J., Cerezo, G., Cassis, L., Franquesa, M., Merino, A., Benitez-Ribas, D., Cruzado, J.M., et al. (2013). Dendritic cells phenotype fitting under hypoxia or lipopolysaccharide; adenosine 5′-triphosphate-binding cassette transporters far beyond an efflux pump. Clin Exp Immunol 172, 444–454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, P., Weaver, V.M., and Werb, Z. (2012). The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol 196, 395–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mao, Y., Keller, E.T., Garfield, D.H., Shen, K., and Wang, J. (2013). Stromal cells in tumor microenvironment and breast cancer. Cancer Metast Rev 32, 303–315.

    Article  Google Scholar 

  • Masson, N., and Ratcliffe, P.J. (2014). Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metab 2, 3.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mouw, J.K., Ou, G., and Weaver, V.M. (2014). Extracellular matrix assembly: a multiscale deconstruction. Nat Rev Mol Cell Biol 15, 771–785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy, J.A., and Dvorak, H.F. (2012). Heterogeneity of the tumor vasculature: the need for new tumor blood vessel type-specific targets. Clin Exp Metast 29, 657–662.

    Article  CAS  Google Scholar 

  • Nan, Y., Zhou, Q., Zhao, W., Lu, Y., and Xu, W. (2019). In vivo imaging of hypoxia generation stimulated by testosterone using a micelle-based near-infrared fluorescent probe. Senss Actuat B Chem 288, 543–551.

    Article  CAS  Google Scholar 

  • Okabe, K., Inada, N., Gota, C., Harada, Y., Funatsu, T., and Uchiyama, S. (2012). Intracellular temperature map** with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun 3, 705.

    Article  PubMed  CAS  Google Scholar 

  • Papkovsky, D.B., and Dmitriev, R.I. (2013). Biological detection by optical oxygen sensing. Chem Soc Rev 42, 8700–8732.

    Article  CAS  PubMed  Google Scholar 

  • Perche, F., Biswas, S., Wang, T., Zhu, L., and Torchilin, V.P. (2014). Hypoxia-targeted siRNA delivery. Angew Chem Int Ed 53, 3362–3366.

    Article  CAS  Google Scholar 

  • Piao, W., Tsuda, S., Tanaka, Y., Maeda, S., Liu, F., Takahashi, S., Kushida, Y., Komatsu, T., Ueno, T., Terai, T., et al. (2013). Development of azobased fluorescent probes to detect different levels of hypoxia. Angew Chem Int Ed 52, 13028–13032.

    Article  CAS  Google Scholar 

  • Pouysségur, J., Dayan, F., and Mazure, N.M. (2006). Hypoxia signalling in cancer and approaches to enforce tumour regression. Nature 441, 437–443.

    Article  PubMed  CAS  Google Scholar 

  • Quintero, M., Mackenzie, N., and Brennan, P.A. (2004). Hypoxia-inducible factor 1 (HIF-1) in cancer. Eur J Surg Oncol 30, 465–468.

    Article  CAS  PubMed  Google Scholar 

  • Rohwer, N., and Cramer, T. (2011). Hypoxia-mediated drug resistance: Novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updates 14, 191–201.

    Article  CAS  Google Scholar 

  • Ryan, L.S., Gerberich, J., Cao, J., An, W., Jenkins, B.A., Mason, R.P., and Lippert, A.R. (2019). Kinetics-based measurement of hypoxia in living cells and animals using an acetoxymethyl ester chemiluminescent probe. ACS Sens 4, 1391–1398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rytelewski, M., Haryutyunan, K., Nwajei, F., Shanmugasundaram, M., Wspanialy, P., Zal, M.A., Chen, C.H., El Khatib, M., Plunkett, S., Vinogradov, S.A., et al. (2019). Merger of dynamic two-photon and phosphorescence lifetime microscopy reveals dependence of lymphocyte motility on oxygen in solid and hematological tumors. J Immunother Cancer 7, 78.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharma, A., Arambula, J.F., Koo, S., Kumar, R., Singh, H., Sessler, J.L., and Kim, J.S. (2019). Hypoxia-targeted drug delivery. Chem Soc Rev 48, 771–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma, R., and Chen, C.J. (2009). Newer nanoparticles in hyperthermia treatment and thermometry. J Nanopart Res 11, 671–689.

    Article  CAS  Google Scholar 

  • Sun, C.Y., Shen, S., Xu, C.F., Li, H.J., Liu, Y., Cao, Z.T., Yang, X.Z., **a, J. X., and Wang, J. (2015). Tumor acidity-sensitive polymeric vector for active targeted siRNA delivery. J Am Chem Soc 137, 15217–15224.

    Article  CAS  PubMed  Google Scholar 

  • Takasawa, M., Moustafa, R.R., and Baron, J.C. (2008). Applications of nitroimidazole in vivo hypoxia imaging in ischemic stroke. Stroke 39, 1629–1637.

    Article  CAS  PubMed  Google Scholar 

  • Thambi, T., Deepagan, V.G., Yoon, H.Y., Han, H.S., Kim, S.H., Son, S., Jo, D.G., Ahn, C.H., Suh, Y.D., Kim, K., et al. (2014). Hypoxia-responsive polymeric nanoparticles for tumor-targeted drug delivery. Biomaterials 35, 1735–1743.

    Article  CAS  PubMed  Google Scholar 

  • Turley, S.J., Cremasco, V., and Astarita, J.L. (2015). Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol 15, 669–682.

    Article  CAS  PubMed  Google Scholar 

  • Ueno, T., Urano, Y., Setsukinai, K.I., Takakusa, H., Kojima, H., Kikuchi, K., Ohkubo, K., Fukuzumi, S., and Nagano, T. (2004). Rational principles for modulating fluorescence properties of fluorescein. J Am Chem Soc 126, 14079–14085.

    Article  CAS  PubMed  Google Scholar 

  • VanHook, A.M. (2017). Hypoxia-induced plasticity in cancer cell migration. Sci Signal 10, eaan0467.

    Article  PubMed  Google Scholar 

  • Vaupel, P., and Mayer, A. (2007). Hypoxia in cancer: significance and impact on clinical outcome. Cancer Metast Rev 26, 225–239.

    Article  CAS  Google Scholar 

  • Vaupel, P., Schlenger, K., Knoop, C., and Höckel, M. (1991). Oxygenation of human tumors: evaluation of tissue oxygen distribution in breast cancers by computerized O2 tension measurements. Cancer Res 51, 3316–3322.

    CAS  PubMed  Google Scholar 

  • Wang, G.L., Jiang, B.H., Rue, E.A., and Semenza, G.L. (1995). Hypoxiainducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension.. Proc Natl Acad Sci USA 92, 5510–5514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, S., Gu, K., Guo, Z., Yan, C., Yang, T., Chen, Z., Tian, H., and Zhu, W.H. (2019). Self-assembly of a monochromophore-based polymer enables unprecedented ratiometric tracing of hypoxia. Adv Mater 31, 1805735.

    Article  CAS  Google Scholar 

  • Weissleder, R. (2001). A clearer vision for in vivo imaging. Nat Biotechnol 19, 316–317.

    Article  CAS  PubMed  Google Scholar 

  • Yu, J., Zhang, Y., Hu, X., Wright, G., and Gu, Z. (2016). Hypoxia-sensitive materials for biomedical applications. Ann Biomed Eng 44, 1931–1945.

    Article  PubMed  Google Scholar 

  • Zeng, Y., Zhang, S., Jia, M., Liu, Y., Shang, J., Guo, Y., Xu, J., and Wu, D. (2013). Hypoxia-sensitive bis(2-(2′-benzothienyl)pyridinato-N,C3′) iridium[poly(n-butyl cyanoacrylate]/chitosan nanoparticles and their phosphorescence tumor imaging in vitro and in vivo. Nanoscale 5, 12633–12644.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, K.Y., Gao, P., Sun, G., Zhang, T., Li, X., Liu, S., Zhao, Q., Lo, K.K. W., and Huang, W. (2018a). Dual-phosphorescent iridium(III) complexes extending oxygen sensing from hypoxia to hyperoxia. J Am Chem Soc 140, 7827–7834.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Q., Chen, J., Ma, M., Wang, H., and Chen, H. (2018b). A bioenvironment-responsive versatile nanoplatform enabling rapid clearance and effective tumor homing for oxygen-enhanced radiotherapy. Chem Mater 30, 5412–5421.

    Article  CAS  Google Scholar 

  • Zhao, X., Li, F., Li, Y., Wang, H., Ren, H., Chen, J., Nie, G., and Hao, J. (2015). Co-delivery of HIF1α siRNA and gemcitabine via biocompatible lipid-polymer hybrid nanoparticles for effective treatment of pancreatic cancer. Biomaterials 46, 13–25.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y., Liu, L., Luo, T., Hong, L., Peng, X., Austin, R.H., and Qu, J. (2018). A platinum-porphine/poly(perfluoroether) film oxygen tension sensor for noninvasive local monitoring of cellular oxygen metabolism using phosphorescence lifetime imaging. Senss Actuat B Chem 269, 88–95.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the China Postdoctoral Science Foundation (2019M651598), the National Natural Science Foundation of China (51772316), and the Key Program for Basic Research of Shanghai (19JC1415600).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hangrong Chen.

Ethics declarations

The author(s) declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Chen, J. & Chen, H. Design strategy of optical probes for tumor hypoxia imaging. Sci. China Life Sci. 63, 1786–1797 (2020). https://doi.org/10.1007/s11427-019-1569-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11427-019-1569-4

Keywords

Navigation