Log in

Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Lead is one of the cursed substances that threaten all human life. Lead poisoning can occur through food or water contaminations and it is hard to be detected. This incognito metal accumulates over time and resides in the liver, kidneys, and brain tissues leading to serious medical conditions, affecting organ functions, causing failure, kidney tubule degeneration, and destroying neuronal development. However, known metal chelators have bad negative effects. Asparagus officinalis (AO) is a promising herb; its root extract exhibited antioxidant, antiapoptotic, protective, and immunomodulatory activities. Inspired by those reasons, this study investigated to which extent Asparagus extract affected male mice’s renal toxicity caused by lead acetate (LA) and antioxidant defense system. This work screened for its nephroprotective activity in four mouse groups: negative and positive control, LA group with renal injury, and diseased but pretreated mice with AO extract (AOE). Kidney index and kidney function biomarkers were evaluated. Antioxidant activities, lipid peroxidation, superoxide dismutase (SOD), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), nitric oxide (NO), and reduced glutathione (GSH) were also tested. Furthermore, inflammatory cytokine (tumor necrosis factor-α (TNF-α), interleukin-1 β (IL-1β), and the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB)), inducible nitric oxide synthase (iNOS), renal pro-apoptotic protein (Bax), antiapoptotic protein (Bcl-2), and caspase-3 levels were evaluated. The results showed that LA administration induced oxidative stress, renal inflammation, apoptosis, and renal histopathological alteration. However, due to its antioxidant activities, AOE was found to restrain oxidative stress, therefore preventing inflammation and apoptosis. Collectively, AOE perfectly clogged lead poisoning sneaking, stopped the bad deterioration, and succeeded to protect kidney tissues from toxicity, inflammation, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Brazil)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

All relevant data are within the paper.

References

  • Abdel Moneim AE (2013) The neuroprotective effects of purslane (Portulaca oleracea) on rotenone-induced biochemical changes and apoptosis in brain of rat. CNS Neurol Disord Drug Targets. 12(6):830–841. https://doi.org/10.2174/18715273113129990081

  • Abdel Moneim AE (2016) Indigofera oblongifolia prevents lead acetate-induced hepatotoxicity, oxidative stress, fibrosis and apoptosis in rats. PLoS One 11(7):e0158965

    Article  Google Scholar 

  • Abdel Moneim AE, Dkhil MA, Al-Quraishy S (2011) The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. J Hazard Mater 194:250–5 (S0304-3894(11)00978-2)

    Article  CAS  Google Scholar 

  • Abdel-Wahhab MA, Abdel-Azim SH, El-Nekeety AA (2008) Inula crithmoides extract protects against ochratoxin A-induced oxidative stress, clastogenic and mutagenic alterations in male rats. Toxicon 52(4):566–73 (S0041-0101(08)00428-5)

    Article  CAS  Google Scholar 

  • Abo-El-Sooud K, Abd-Elhakim YM, Hashem MMM, El-Metwally AE, Hassan BA, El-Nour HHM (2023) Ameliorative effects of quercetin against hepatic toxicity of oral sub-chronic co-exposure to aluminum oxide nanoparticles and lead-acetate in male rats. Naunyn Schmiedebergs Arch Pharmacol 396(4):737–747. https://doi.org/10.1007/s00210-022-02351-y

    Article  CAS  Google Scholar 

  • Adouni K, Zouaoui O, Chahdoura H, Thouri A, Lamine JB, Santos-Buelga C et al (2018) In vitro antioxidant activity, α-glucosidase inhibitory potential and in vivo protective effect of Asparagus stipularis Forssk aqueous extract against high-fructose diet-induced metabolic syndrome in rats. J Funct Foods 47:521–530. https://doi.org/10.1016/j.jff.2018.06.006

    Article  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/s0076-6879(84)05016-3

    Article  CAS  Google Scholar 

  • Agarwal S, Roy S, Ray A, Mazumder S, Bhattacharya S (2009) Arsenic trioxide and lead acetate induce apoptosis in adult rat hepatic stem cells. Cell Biol Toxicol 25(4):403–413. https://doi.org/10.1007/s10565-008-9094-6

    Article  CAS  Google Scholar 

  • Albarakati AJA, Baty RS, Aljoudi AM, Habotta OA, Elmahallawy EK, Kassab RB et al (2020) Luteolin protects against lead acetate-induced nephrotoxicity through antioxidant, anti-inflammatory, anti-apoptotic, and Nrf2/HO-1 signaling pathways. Mol Biol Rep 47(4):2591–2603. https://doi.org/10.1007/s11033-020-05346-1

    Article  CAS  Google Scholar 

  • Alhusaini AM, Fadda LM, Hasan IH, Ali HM, Badr A, Elorabi N et al (2020) Role of some natural anti-oxidants in the down regulation of Kim, VCAM1, Cystatin C protein expression in lead acetate-induced acute kidney injury. Pharmacol Rep 72(2):360–367. https://doi.org/10.1007/s43440-020-00072-8

    Article  CAS  Google Scholar 

  • Almeer RS, AlBasher GI, Alarifi S, Alkahtani S, Ali D, Abdel Moneim AE (2019) Royal jelly attenuates cadmium-induced nephrotoxicity in male mice. Sci Rep 9(1):5825. https://doi.org/10.1038/s41598-019-42368-7

    Article  CAS  Google Scholar 

  • Al-Megrin WA, Soliman D, Kassab RB, Metwally DM, Ahmed EAM, El-Khadragy MF (2020) Coenzyme Q10 activates the antioxidant machinery and inhibits the inflammatory and apoptotic cascades against lead acetate-induced renal injury in rats. Front Physiol 11:64. https://doi.org/10.3389/fphys.2020.00064

    Article  Google Scholar 

  • Alyami NM, Almeer R, Alyami HM (2023) Protective effects of Asparagus officinalis (asparagus) against lead toxicity in mice. Environ Sci Pollut Res Int 30(7):18718–18730. https://doi.org/10.1007/s11356-022-23540-5

    Article  CAS  Google Scholar 

  • Ansar S, AlGhosoon HT, Hamed S (2015) Evaluation of protective effect of rutin on lead acetate-induced testicular toxicity in Wistar rats. Toxin Rev 34(4):195–199. https://doi.org/10.3109/15569543.2015.1136333

    Article  CAS  Google Scholar 

  • Aqeel T, Gurumallu SC, Bhaskar A, Hashimi SM, Lohith NC, Javaraiah R (2021) Protective role of flaxseed lignan secoisolariciresinol diglucoside against lead-acetate-induced oxidative-stress-mediated nephrotoxicity in rats. Phytomedicine plus 1(3):100038. https://doi.org/10.1016/j.phyplu.2021.100038

    Article  Google Scholar 

  • Azadbakht M, Asghari M, NowroozpoorDailami K, Davoodi A, Ahmadi A (2020) The preventive effects of Asparagus officinalis extract on sodium selenite-induced cataractogenesis in experimental animal models. Evid Based Complement Alternat Med 2020:3708730. https://doi.org/10.1155/2020/3708730

    Article  Google Scholar 

  • Balaji K, Vijayakumar J, Sankaran PK, Senthilkumar S, Vijayaraghavan R, Selvaraj J et al (2021) Molecular studies on the nephroprotective potential of Celastrus paniculatus against lead-acetate-induced nephrotoxicity in experimental rats: role of the PI3K/AKT signaling pathway. Molecules 26(21):6647

    Article  CAS  Google Scholar 

  • Baty RS, Hassan KE, Alsharif KF, El-Hennamy RE, Elmahallawy EK, Hafez MM et al (2020) Neuroprotective role of luteolin against lead acetate-induced cortical damage in rats. Hum Exp Toxicol 39(9):1200–1212. https://doi.org/10.1177/0960327120913094

    Article  CAS  Google Scholar 

  • Bhatnagar M, Sisodia SS, Bhatnagar R (2005) Antiulcer and antioxidant activity of Asparagus racemosus Willd and Withania somnifera Dunal in rats. Ann N Y Acad Sci 1056:261–78 (1056/1/261)

    Article  CAS  Google Scholar 

  • Bhatnagar M, Meena P, Satyendra B, Chetan J (2013) Neuroprotective response of the hippocampus region of the brain to Withania somnifera and Asparagus racemosus root extract: an in vitro study. J Med Plants Res 7:2259–2264. https://doi.org/10.5897/jmpr12.497

    Article  Google Scholar 

  • Bhattacharjee A, Kulkarni VH, Chakraborty M, Habbu PV, Ray A (2021) Ellagic acid restored lead-induced nephrotoxicity by anti-inflammatory, anti-apoptotic and free radical scavenging activities. Heliyon 7(1):e05921 (S2405-8440(21)00026-8)

    Article  CAS  Google Scholar 

  • Bienias B, Zajaczkowska M, Borzecka H, Sikora P, Wieczorkiewicz-Plaza A, Wilczynska B (2015) Early markers of tubulointerstitial fibrosis in children with idiopathic nephrotic syndrome: preliminary report. Medicine (Baltimore) 94(42):e1746 (00005792-201510030-00039)

    Article  CAS  Google Scholar 

  • Bravo Y, Quiroz Y, Ferrebuz A, Vaziri ND, Rodriguez-Iturbe B (2007) Mycophenolate mofetil administration reduces renal inflammation, oxidative stress, and arterial pressure in rats with lead-induced hypertension. Am J Physiol Renal Physiol 293(2):616–23. https://doi.org/10.1152/ajprenal.00507.2006

    Article  CAS  Google Scholar 

  • Dey P (2018) Basic and advanced laboratory techniques in histopathology and cytology. Springer Nature, Singapore

    Book  Google Scholar 

  • Dkhil MA, Al-Khalifa MS, Al-Quraishy S, Zrieq R, Abdel Moneim AE (2016) Indigofera oblongifolia mitigates lead-acetate-induced kidney damage and apoptosis in a rat model. Drug Des Devel Ther 10:1847–1856. https://doi.org/10.2147/DDDT.S105511

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82(1):70–77

    Article  CAS  Google Scholar 

  • Factor VM, Kiss A, Woitach JT, Wirth PJ, Thorgeirsson SS (1998) Disruption of redox homeostasis in the transforming growth factor-α/c-myc transgenic mouse model of accelerated hepatocarcinogenesis. J Biol Chem 273(25):15846–15853

    Article  CAS  Google Scholar 

  • Fadda A, Barberis A, Sanna D (2018) Influence of pH, buffers and role of quinolinic acid, a novel iron chelating agent, in the determination of hydroxyl radical scavenging activity of plant extracts by electron paramagnetic resonance (EPR). Food Chem 240:174–182. https://doi.org/10.1016/j.foodchem.2017.07.076

    Article  CAS  Google Scholar 

  • Gargouri M, Soussi A, Akrouti A, Magne C, El Feki A (2018) Ameliorative effects of Spirulina platensis against lead-induced nephrotoxicity in newborn rats: modulation of oxidative stress and histopathological changes. EXCLI J 17(215–232):2017–1016

    Google Scholar 

  • Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR (1982) Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids (Research Support, U.S. Gov’t, P.H.S.). Anal Biochem 126(1):131–8

    Article  CAS  Google Scholar 

  • Hasanein P, Riahi H (2018) Preventive use of berberine in inhibition of lead-induced renal injury in rats. Environ Sci Pollut Res Int 25(5):4896–4903. https://doi.org/10.1007/s11356-017-0702-y[pii]

    Article  CAS  Google Scholar 

  • Hossain M, Sharmin F, Akhter S, Bhuiyan M, Shahriar M (2012) Investigation of cytotoxicity and In-vitro antioxidant activity of Asparagus racemosus root extract. Int Curr Pharmaceut J 1:250–257. https://doi.org/10.3329/icpj.v1i9.11615

    Article  Google Scholar 

  • Hou G, Surhio MM, Ye H, Gao X, Ye Z, Li J et al (2019) Protective effects of a Lachnum polysaccharide against liver and kidney injury induced by lead exposure in mice. Int J Biol Macromol 124:716–723 (S0141-8130(18)34161-8)

    Article  CAS  Google Scholar 

  • Ilesanmi OB, Agoro E-YS (2022) Ameliorative effect of Trevo dietary supplement against lead acetate nephrotoxicity. Iran J Toxicol 16(1):35–42. https://doi.org/10.32598/ijt.16.1.857.1

    Article  CAS  Google Scholar 

  • Ito T, Goto K, Takanari J, Miura T, Wakame K, Nishioka H et al (2014) Effects of enzyme-treated asparagus extract on heat shock protein 70, stress indices, and sleep in healthy adult men. J Nutr Sci Vitaminol (Tokyo) 60(4):283–90. https://doi.org/10.3177/jnsv.60.283. (DN/JST.JSTAGE/jnsv/60.283 [pii])

    Article  CAS  Google Scholar 

  • Kedir MW, Dubiwak DA, Ahmed TE (2022) Nephroprotective Effect of Asparagus africanus Lam. Root Extract against Gentamicin-Induced Nephrotoxicity in Swiss Albino Mice. J Toxicol 2022:1–8. https://doi.org/10.1155/2022/8440019

    Article  CAS  Google Scholar 

  • Kiernan J (2015) Histological and histochemical methods. Theory and practice, 5th edn. Scion Publishing Ltd, p 571

    Google Scholar 

  • Kongkaneramit L, Witoonsaridsilp W, Peungvicha P, Ingkaninan K, Waranuch N, Sarisuta N (2011) Antioxidant activity and antiapoptotic effect of Asparagus racemosus root extracts in human lung epithelial H460 cells. Exp Ther Med 2(1):143–148 (etm-02-01-0143)

    Article  CAS  Google Scholar 

  • Liu CM, Sun YZ, Sun JM, Ma JQ, Cheng C (2012) Protective role of quercetin against lead-induced inflammatory response in rat kidney through the ROS-mediated MAPKs and NF-kappaB pathway. Biochim Biophys Acta 1820(10):1693–703 (S0304-4165(12)00188-2)

    Article  CAS  Google Scholar 

  • Lopez-Salas L, Borras-Linares I, Quirantes-Pine R, Emanuelli T, Segura-Carretero A, Lozano-Sanchez J (2022) Enhancing the production of the phenolic extracts of asparagus using an advanced green process. Metabolites 12(10):951. https://doi.org/10.3390/metabo12100951

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275

    Article  CAS  Google Scholar 

  • Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S (2021) Neuro-nutraceutical potential of Asparagus racemosus: a review. Neurochem Int 145:105013 (S0197-0186(21)00059-0)

    Article  CAS  Google Scholar 

  • Mitra SK, Prakash NS, Sundaram R (2012) Shatavarins (containing Shatavarin IV) with anticancer activity from the roots of Asparagus racemosus. Indian J Pharmacol 44(6):732–6 (IJPharm-44-732)

    Article  Google Scholar 

  • Negi JS, Singh P, Joshi GP, Rawat MS, Bisht VK (2010) Chemical constituents of Asparagus. Pharmacogn Rev 4(8):215–20 (PRev-4-215)

    Article  CAS  Google Scholar 

  • Nishikimi M, Appaji N, Yagi K (1972) The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem Biophys Res Commun 46(2):849–854. https://doi.org/10.1016/s0006-291x(72)80218-3

    Article  CAS  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95(2):351–358. https://doi.org/10.1016/0003-2697(79)90738-3

    Article  CAS  Google Scholar 

  • Oyagbemi AA, Omobowale TO, Akinrinde AS, Saba AB, Ogunpolu BS, Daramola O (2015) Lack of reversal of oxidative damage in renal tissues of lead acetate-treated rats. Environ Toxicol 30(11):1235–1243. https://doi.org/10.1002/tox.21994

    Article  CAS  Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70(1):158–169

    CAS  Google Scholar 

  • Plangsombat N, Rungsardthong K, Kongkaneramit L, Waranuch N, Sarisuta N (2016) Anti-inflammatory activity of liposomes of Asparagus racemosus root extracts prepared by various methods. Exp Ther Med 12(4):2790–2796 (ETM-0-0-3661)

    Article  CAS  Google Scholar 

  • Poormoosavi SM, Najafzadehvarzi H, Behmanesh MA, Amirgholami R (2018) Protective effects of Asparagus officinalis extract against bisphenol A- induced toxicity in Wistar rats. Toxicol Rep 5:427–433 (S2214-7500(18)30116-1)

    Article  CAS  Google Scholar 

  • Rong J, Chang W, Lv L, Chen J (2008) Study on the roles of nuclear factor-kappaB, p53 and Bcl-2 gene in lead acetate induced apoptosis in PC12 cells. Wei Sheng Yan Jiu 37(3):262–3268

    CAS  Google Scholar 

  • Shao Y, Chin CK, Ho CT, Ma W, Garrison SA, Huang MT (1996) Anti-tumor activity of the crude saponins obtained from asparagus. Cancer Lett 104(1):31–6. https://doi.org/10.1016/0304383596042334

    Article  CAS  Google Scholar 

  • Sharma RP, Street JC, Shupe JL, Bourcier DR (1982) Accumulation and depletion of cadmium and lead in tissues and milk of lactating cows fed small amounts of these metals. J Dairy Sci 65(6):972–9. https://doi.org/10.3168/jds.S0022-0302(82)82298-4. (S0022-0302(82)82298-4 [pii])

    Article  CAS  Google Scholar 

  • Shi Y, Tian C, Yu X, Fang Y, Zhao X, Zhang X, et al (2020) Protective effects of Smilax glabra Roxb. Against lead-induced renal oxidative stress, inflammation and apoptosis in weaning rats and HEK-293 cells (Original Research). Front Pharmacol 11. https://doi.org/10.3389/fphar.2020.556248

  • Shirato K, Takanari J, Ogasawara J, Sakurai T, Imaizumi K, Ohno H et al (2016) Enzyme-treated asparagus extract attenuates hydrogen peroxide-induced matrix metalloproteinase-9 expression in murine skin fibroblast L929 cells. Nat Prod Commun 11(5):677–680

    Google Scholar 

  • Shirato K, Koda T, Takanari J, Sakurai T, Ogasawara J, Imaizumi K et al (2018) Anti-inflammatory effect of ETAS(R)50 by inhibiting nuclear factor-kappaB p65 nuclear import in ultraviolet-B-irradiated normal human dermal fibroblasts. Evid Based Complement Alternat Med 2018:5072986. https://doi.org/10.1155/2018/5072986

    Article  Google Scholar 

  • Shirato K, Takanari J, Kizaki T (2021) Standardized extract of Asparagus officinalis stem attenuates SARS-CoV-2 spike protein-induced IL-6 and IL-1beta production by suppressing p44/42 MAPK and Akt phosphorylation in murine primary macrophages. Molecules 26(20):6189. https://doi.org/10.3390/molecules26206189

    Article  CAS  Google Scholar 

  • Singh N, Kumar A, Gupta VK, Sharma B (2018) Biochemical and molecular bases of lead-induced toxicity in mammalian systems and possible mitigations. Chem Res Toxicol 31(10):1009–1021. https://doi.org/10.1021/acs.chemrestox.8b00193

    Article  CAS  Google Scholar 

  • Sun Y, Oberley LW, Li Y (1988) A simple method for clinical assay of superoxide dismutase. Clin Chem 34(3):497–500

    Article  CAS  Google Scholar 

  • Symes A, Shavandi A, Zhang H, Mohamed Ahmed IA, Al-Juhaimi FY, Bekhit AE (2018) Antioxidant activities and caffeic acid content in New Zealand Asparagus (Asparagus officinalis) roots extracts. Antioxidants (Basel) 7(4):52. https://doi.org/10.3390/antiox7040052

    Article  CAS  Google Scholar 

  • Thakur M, Thompson D, Connellan P, Deseo MA, Morris C, Dixit VK (2011) Improvement of penile erection, sperm count and seminal fructose levels in vivo and nitric oxide release in vitro by ayurvedic herbs. Andrologia 43(4):273–277. https://doi.org/10.1111/j.1439-0272.2010.01068.x

    Article  CAS  Google Scholar 

  • Tian ZK, Zhang YJ, Feng ZJ, Jiang H, Cheng C, Sun JM et al (2021) Nephroprotective effect of gastrodin against lead-induced oxidative stress and inflammation in mice by the GSH, Trx, Nrf2 antioxidant system, and the HMGB1 pathway. Toxicol Res (Camb) 10(2):249–263. https://doi.org/10.1093/toxres/tfab003

    Article  Google Scholar 

  • Vadivelan R, Gopala Krishnan R, Kannan R (2019) Antidiabetic potential of Asparagus racemosus Willd leaf extracts through inhibition of alpha-amylase and alpha-glucosidase. J Tradit Complement Med 9(1):1–4 (S2225-4110(17)30126-8)

    Article  CAS  Google Scholar 

  • Wang L, Li J, Liu Z (2009) Effects of lead and/or cadmium on the oxidative damage of rat kidney cortex mitochondria. Biol Trace Elem Res. https://doi.org/10.1007/s12011-009-8560-1

    Article  Google Scholar 

  • Yabe J, Nakayama SM, Nakata H, Toyomaki H, Yohannes YB, Muzandu K et al (2020) Current trends of blood lead levels, distribution patterns and exposure variations among household members in Kabwe. Zambia. Chemosphere 243:125412 (S0045-6535(19)32652-9)

    Article  CAS  Google Scholar 

  • Yedjou CG, Tchounwou HM, Tchounwou PB (2015) DNA damage, cell cycle arrest, and apoptosis induction caused by lead in human leukemia cells. Int J Environ Res Public Health 13(1):ijerph13010056. https://doi.org/10.3390/ijerph13010056

    Article  CAS  Google Scholar 

  • Yin M, Jiang N, Guo L, Ni Z, Al-Brakati AY, Othman MS, Abdel Moneim AE, Kassab RB (2019) Oleuropein suppresses oxidative, inflammatory, and apoptotic responses following glycerol-induced acute kidney injury in rats. Life Sci 232:116634. https://doi.org/10.1016/j.lfs.2019.116634

    Article  CAS  Google Scholar 

  • Yuniarti WM, Krismaharani N, Ciptaningsih P, Celia K, Veteriananta KD, Ma’ruf A et al (2021) The protective effect of Ocimum sanctum leaf extract against lead acetate-induced nephrotoxicity and hepatotoxicity in mice (Mus musculus). Vet World 14(1):250–258 (Vetworld-14-250)

    Article  CAS  Google Scholar 

  • Zhang H, Birch J, **e C, Yang H, El-Din Bekhit A (2019a) Optimization of ultrasound assisted extraction method for phytochemical compounds and in-vitro antioxidant activity of New Zealand and China Asparagus cultivars (officinalis L.) roots extracts. Food Chem 294:276–284 (S0308-8146(19)30465-0)

    Article  CAS  Google Scholar 

  • Zhang T, Chen S, Chen L, Zhang L, Meng F, Sha S et al (2019b) Chlorogenic acid ameliorates lead-induced renal damage in mice. Biol Trace Elem Res 189(1):109–117. https://doi.org/10.1007/s12011-018-1508-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R96), King Saud University, Riyadh, Saudi Arabia.

Funding

The authors would like to extend their sincere appreciation to the Researchers Supporting Project number (RSP2023R96), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

R.A. and N.M.A. designed the project, performed the experiments and drafted and edited the manuscript. R.A. analyzed and interpreted the data and supplied the chemicals and reagents. Both authors drafted and edited the manuscript. All authors approved the final draft.

Corresponding author

Correspondence to Rafa Almeer.

Ethics declarations

Ethical approval

All the experimental protocols and procedures used in this study were approved by the Research Ethics Committee (REC) authorized the regulations and procedures governing the handling and care of animals. The animals were treated under KSU-SE-21–44 approval.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Informed consent statement

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Mohamed M. Abdel-Daim

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almeer, R., Alyami, N.M. Renal-protective effect of Asparagus officinalis aqueous extract against lead-induced nephrotoxicity mouse model. Environ Sci Pollut Res 30, 112745–112757 (2023). https://doi.org/10.1007/s11356-023-30280-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-023-30280-7

Keywords

Navigation