Log in

Dietary supplementation with curcumin nanomicelles, curcumin, and turmeric affects growth performance and silver nanoparticle toxicity in Cyprinus carpio

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An 8-week feeding experiment was conducted to investigate the effects of curcumin nanomicelle, curcumin, and turmeric (Curcuma longa) on growth performances, body composition, fatty acid profile, and biochemical parameters of common carp (Cyprinus carpio), and their ameliorative effects against toxicity of silver nanoparticles (AgNPs). A total of 120 healthy carps were randomly distributed into four equal treatments. Curcumin nanomicelle, curcumin, and turmeric were each added separately to the basal diet. After the feeding trials, all treatments were exposed to a non-lethal concentration of AgNPs (0.5 mg L−1) for 96 h. Fish fed dietary turmeric showed a significantly higher weight gain. The body protein content was significantly increased in all feeding groups, while the lipid content showed a significant decrease in the turmeric-treated group. Dietary turmeric improved the concentration of saturated fatty acids (SFA) and monounsaturated fatty acid (MUFA). AgNP exposure led to increases in liver catalase (CAT) activity of carps fed with turmeric and curcumin. The lowest amount of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) was obtained in fish fed with nanomicelle curcumin and curcumin diets. The lowest amount of silver accumulation in the liver of carps was found in fish fed with dietary curcumin nanomicelle. This experiment suggests that supplementation of turmeric (50 g kg−1) or curcumin (1000 mg kg−1) may play an important role in enhancing growth performances and fatty acid composition of the common carp. Moreover, administration of curcumin nanomicelle in the diet may have a potential ameliorative effect against toxicity of AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdelrazek HMA, Tag HM, Kilany OE, Reddy PG, Hassan AM (2017) Immuomodulatory effect of dietary turmeric supplementation on Nile tilapia (Oreochromis niloticus). Aquac Nutr 23:1048–1054

    Article  CAS  Google Scholar 

  • Abdel-Tawwab M, Abbass FE (2017) Turmeric Powder, Curcuma longa L., in Common carp, Cyprinus carpio L., diets: growth performance, innate immunity, and challenge against pathogenic Aeromonas hydrophila infection. J World Aquacult Soc 48:303–312

    Article  Google Scholar 

  • Ackman RG (2007) Fatty acids in fish and shellfish. In: Chow CK (ed) Fatty acids in foods and their health implications, 3rd edn. CRC Press, pp 155–185

    Chapter  Google Scholar 

  • Akdemir F, Orhan C, Tuzcu M, Sahin N, Juturu V, Sahin K (2017) The efficacy of dietary curcumin on growth performance, lipid peroxidation and hepatic transcription factors in rainbow trout Oncorhynchus mykiss (Walbaum) reared under different stocking densities. Aquac Res 48:4012–4021

    Article  CAS  Google Scholar 

  • Ale A, Rossi AS, Bacchetta C, Gervasio S, de la Torre FR, Cazenave J (2018) Integrative assessment of silver nanoparticles toxicity in Prochilodus lineatus fish. Ecol Indic 93:1190–1198

    Article  CAS  Google Scholar 

  • Ali M, Iqbal F, Salam A, Iram S, Athar M (2005) Comparative study of body composition of different fish species from brackish water pond. Int J Environ Sci Technol 2:229–232

    Article  Google Scholar 

  • Anayurt RA, Sari A, Tuzen M (2009) Equilibrium, thermodynamic and kinetic studies on biosorption of Pb (II) and Cd (II) from aqueous solution by macrofungus (Lactarius scrobiculatus) biomass. Chem Eng J 151:255–261

    Article  CAS  Google Scholar 

  • AOAC (1990) Official methods of analysis. Assoc Off Anal Chem 1:684

    Google Scholar 

  • AOCS (1998) Official methods and recommended practices of the American Oil Chemists’ Society. AOCS 5:2–93

    Google Scholar 

  • Asadi Dokht Lish R, Johari SA, Sarkheil M, Yu IJ (2019) On how environmental and experimental conditions affect the results of aquatic nanotoxicology on brine shrimp (Artemia salina): a case of silver nanoparticles toxicity. Environ Pollut 255:113358

    Article  CAS  Google Scholar 

  • Ashouri S, Keyvanshokooh S, Salati AP, Johari SA, Pasha-Zanoosi H (2015) Effects of different levels of dietary selenium nanoparticles on growth performance, muscle composition, blood biochemical profiles and antioxidant status of common carp (Cyprinus carpio). Aquaculture 446:25–29

    Article  CAS  Google Scholar 

  • Awasthi Y, Ratn A, Prasad R, Kumar M, Trivedi A, Shukla JP, Trivedi SP (2019) A protective study of curcumin associated with Cr6+ induced oxidative stress, genetic damage, transcription of genes related to apoptosis and histopathology of fish, Channa punctatus (Bloch, 1793). Environ Toxicol Pharmacol 71:103209

    Article  CAS  Google Scholar 

  • Baldissera MD, Souza CF, Zeppenfeld CC, Velho MC, Klein B, Abbad LB, Ourique AF, Wagner R, Da Silva AS, Baldisserotto B (2020) Dietary supplementation with nerolidol nanospheres improves growth, antioxidant status and fillet fatty acid profiles in Nile tilapia: benefits of nanotechnology for fish health and meat quality. Aquaculture 516:734635

    Article  CAS  Google Scholar 

  • Began G, Sudharshan E, Udaya Sankar K, Appu Rao A (1999) Interaction of curcumin with phosphatidylcholine: a spectrofluorometric study. J Agric Food Chem 47:4992–4997

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu D-Y (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159

    Article  CAS  Google Scholar 

  • Costa P, Chicano-Gálvez E, Barea JL, DelValls T, Costa M (2010) Alterations to proteome and tissue recovery responses in fish liver caused by a short-term combination treatment with cadmium and benzo [a] pyrene. Environ Pollut 158:3338–3346

    Article  CAS  Google Scholar 

  • Cui H, Liu B, X-p G, **E J, Xu P, L-h M, Sun S, Liao Y, Chen R, Ren M (2013) Effects of dietary curcumin on growth performance, biochemical parameters, HSP70 gene expression and resistance to Streptococcus iniae of juvenile Gift Tilapia, Oreochromis niloticus. Isr J Aquac 66:986–996

    Google Scholar 

  • Daneshyar M, Ghandkanlo MA, Bayeghra FS, Farhangpajhoh F, Aghaei M (2011) Effects of dietary turmeric supplementation on plasma lipoproteins, meat quality and fatty acid composition in broilers. South Afr J Animal Sci 41:420–428

    CAS  Google Scholar 

  • De M, Ghosh PS, Rotello VM (2008) Applications of Nanoparticles in Biology. Adv Mater 20:4225–4241

    Article  CAS  Google Scholar 

  • Dumas A, De Lange CF, France J, Bureau DP (2007) Quantitative description of body composition and rates of nutrient deposition in rainbow trout (Oncorhynchus mykiss). Aquaculture 273:165–181

    Article  CAS  Google Scholar 

  • El-Houseiny W, Khalil AA, Abd-Elhakim YM, Badr HA (2019) The potential role of turmeric and black pepper powder diet supplements in reversing cadmium-induced growth retardation, ATP depletion, hepatorenal damage, and testicular toxicity in Clarias gariepinus. Aquaculture 510:109–121

    Article  CAS  Google Scholar 

  • Fagnon MS, Thorin C, Calvez S (2020) Meta-analysis of dietary supplementation effect of turmeric and curcumin on growth performance in fish. Rev Aquac 12:2268–2283

    Article  Google Scholar 

  • FAO (2018) The state of world fisheries and aquaculture 2018-meeting the sustainable development goals. License CC BY-NC-SA 3.0 IGO

    Google Scholar 

  • Ferreira PMF, Martins MTS, Caldas DW, Gomes JR, de Oliveira JM, Salaro AL, Rocha JS, Zuanon JAS (2017) Curcuma longa as additive in the diet for Astyanax aff. bimaculatus. Fish Physiol Biochem 43:691–702

    Article  Google Scholar 

  • Flück H, Jaspersen-Schib R (1976) Medicinal plants and their uses: medicinal plants, simply described and illustrated with notes on their constituents, actions and uses, their collection, cultivation and preparations. W. Foulsham

    Google Scholar 

  • Folch J, Lees M, Stanley GS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    Article  CAS  Google Scholar 

  • Gagné F, André C, Skirrow R, Gélinas M, Auclair J, Van Aggelen G, Turcotte P, Gagnon C (2012) Toxicity of silver nanoparticles to rainbow trout: a toxicogenomic approach. Chemosphere 89:615–622

    Article  Google Scholar 

  • Gatta P, Pirini M, Testi S, Vignola G, Monetti P (2000) The influence of different levels of dietary vitamin E on sea bass Dicentrarchus labrax flesh quality. Aquac Nutr 6:47–52

    Article  CAS  Google Scholar 

  • Govindasamy R, Rahuman AA (2012) Histopathological studies and oxidative stress of synthesized silver nanoparticles in Mozambique tilapia (Oreochromis mossambicus). J Environ Sci 24:1091–1098

    Article  CAS  Google Scholar 

  • Haghighat F, Kim Y, Sourinejad I, Yu IJ, Johari SA (2021) Titanium dioxide nanoparticles affect the toxicity of silver nanoparticles in common carp (Cyprinus carpio). Chemosphere 262:127805

    Article  CAS  Google Scholar 

  • Hosseini-Vashan S, Golian A, Yaghobfar A, Zarban A, Afzali N, Esmaeilinasab P (2012) Antioxidant status, immune system, blood metabolites, and carcass characteristic of broiler chickens fed turmeric rhizome powder under heat stress. Afr J Biotechnol 11:16118–16125

    Article  CAS  Google Scholar 

  • Huang X-J, Choi Y-K, Im H-S, Yarimaga O, Yoon E, Kim H-S (2006) Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors 6:756–782

    Article  CAS  Google Scholar 

  • Hwang J-H, Rha S-J, Han K-H, Kim S-J (2013) Body composition of black rockfish Sebastes schlegeli fed on diets containing different levels of turmeric Curcuma longa L. Kor J Fish Aqua Sci 46:540–545

    CAS  Google Scholar 

  • Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S, Vija H, Käkinen A, Titma T, Heinlaan M (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9:e102108

    Article  Google Scholar 

  • Jiang J, Wu X-Y, Zhou X-Q, Feng L, Liu Y, Jiang W-D, Wu P, Zhao Y (2016) Effects of dietary curcumin supplementation on growth performance, intestinal digestive enzyme activities and antioxidant capacity of crucian carp Carassius auratus. Aquaculture 463:174–180

    Article  Google Scholar 

  • Johari SA, Kalbassi MR, Yu IJ, Lee JH (2015) Chronic effect of waterborne silver nanoparticles on rainbow trout (Oncorhynchus mykiss): histopathology and bioaccumulation. Comp Clin Pathol 24:995–1007

    Article  CAS  Google Scholar 

  • Joo HS, Kalbassi MR, Johari SA (2018) Hematological and histopathological effects of silver nanoparticles in rainbow trout (Oncorhynchus mykiss)—how about increase of salinity? Environ Sci Pollut Res 25:15449–15461

    Article  CAS  Google Scholar 

  • Kaul S, Krishnakantha T (1997) Influence of retinol deficiency and curcumin/turmeric feeding on tissue microsomal membrane lipid peroxidation and fatty acids in rats. Mol Cell Biochem 175:43–48

    Article  CAS  Google Scholar 

  • Kohshahi AJ, Sourinejad I, Sarkheil M, Johari SA (2019) Dietary cosupplementation with curcumin and different selenium sources (nanoparticulate, organic, and inorganic selenium): influence on growth performance, body composition, immune responses, and glutathione peroxidase activity of rainbow trout (Oncorhynchus mykiss). Fish Physiol Biochem 45:793–804

    Article  CAS  Google Scholar 

  • Krutyakov YA, Kudrinskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233–257

    Article  CAS  Google Scholar 

  • Kumar N, Krishnani KK, Gupta SK, Singh NP (2018) Effects of silver nanoparticles on stress biomarkers of Channa striatus: immuno-protective or toxic? Environ Sci Pollut Res 25:14813–14826

    Article  CAS  Google Scholar 

  • Li M, **n M, Guo C, Lin G, Wu X (2017) New nanomicelle curcumin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Dev Ind Pharm 43:1846–1857

    Article  CAS  Google Scholar 

  • Liu W, Lu X, Jiang M, Wu F, Tian J, Yu L, Wen H (2020) Effects of dietary niacin on liver health in genetically improved farmed tilapia (Oreochromis niloticus). Aquacult Rep 16:100243

    Article  Google Scholar 

  • Mahmoud MM, El-Lamie MM, Dessouki AA, Yusuf MS (2014) Effect of turmeric (Curcuma longa) supplementation on growth performance, feed utilization, and resistance of Nile tilapia (Oreochromis niloticus) to Pseudomonas fluorescens challenge. Global Res J Fish Sci Aquacult 1:26–33

    Google Scholar 

  • Mahmoud HK, Al-Sagheer AA, Reda FM, Mahgoub SA, Ayyat MS (2017) Dietary curcumin supplement influence on growth, immunity, antioxidant status, and resistance to Aeromonas hydrophila in Oreochromis niloticus. Aquaculture 475:16–23

    Article  CAS  Google Scholar 

  • Manju M, Akbarsha MA, Oommen OV (2012) In vivo protective effect of dietary curcumin in fish Anabas testudineus (Bloch). Fish Physiol Biochem 38:309–318

    Article  CAS  Google Scholar 

  • Martínez-Gutierrez F, Thi EP, Silverman JM, de Oliveira CC, Svensson SL, Hoek AV, Sánchez EM, Reiner NE, Gaynor EC, Pryzdial EL (2012) Antibacterial activity, inflammatory response, coagulation and cytotoxicity effects of silver nanoparticles. Nanomedicine 8:328–336

    Article  Google Scholar 

  • McGillicuddy E, Murray I, Kavanagh S, Morrison L, Fogarty A, Cormican M, Dockery P, Prendergast M, Rowan N, Morris D (2017) Silver nanoparticles in the environment: Sources, detection and ecotoxicology. Sci Total Environ 575:231–246

    Article  CAS  Google Scholar 

  • Moniruzzaman M, Min T (2020) Curcumin, curcumin nanoparticles and curcumin nanospheres: a review on their pharmacodynamics based on monogastric farm animal, poultry and fish nutrition. Pharmaceutics 12:447

    Article  CAS  Google Scholar 

  • Navarro E, Baun A, Behra R, Hartmann NB, Filser J, Miao A-J, Quigg A, Santschi PH, Sigg L (2008) Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17:372–386

    Article  CAS  Google Scholar 

  • Nickum J, Bart H Jr, Bowser P, Greer I, Hubbs C, Jenkins JA, MacMillan J, Rachlin J, Rose J, Sorensen P (2004) Guidelines for the use of fishes in research. Fisheries-Bethesda 29:26–26

    Google Scholar 

  • Nonose N, Pereira JA, Machado PRM, Rodrigues MR, Sato DT, Martinez CAR (2014) Oral administration of curcumin (Curcuma longa) can attenuate the neutrophil inflammatory response in zymosan-induced arthritis in rats. Acta Cir Bras 29:727–734

    Article  Google Scholar 

  • Peiretti P, Masoero G, Meineri G (2011) Effects of replacing palm oil with maize oil and Curcuma longa supplementation on the performance, carcass characteristics, meat quality and fatty acid profile of the perirenal fat and muscle of growing rabbits. Animal 5:795–801

    Article  CAS  Google Scholar 

  • Prasad S, Aggarwal BB (2011) Turmeric, the golden spice. In: Herbal medicine: biomolecular and clinical aspects, 2nd edn

    Google Scholar 

  • Qayoom A, Kazmi SA, Ali SN (2017) Turmeric powder as a natural heavy metal chelating agent: Surface characterisation. Pak J Scient Industr Res Ser A Phys Sci 60:1–8

    Article  CAS  Google Scholar 

  • Raj S, Jose S, Sumod U, Sabitha M (2012) Nanotechnology in cosmetics: opportunities and challenges. J Pharm Bioallied Sci 4:186–193

    Article  Google Scholar 

  • Rajabiesterabadi H, Hoseini SM, Fazelan Z, Hoseinifar SH, Doan HV (2020) Effects of dietary turmeric administration on stress, immune, antioxidant and inflammatory responses of common carp (Cyprinus carpio) during copper exposure. Aquac Nutr 26:1143–1153

    Article  CAS  Google Scholar 

  • Ramachandran R, Krishnaraj C, Kumar VA, Harper SL, Kalaichelvan TP, Yun S-I (2018) In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. 3 Biotech 8:1–12

    Article  CAS  Google Scholar 

  • Rawung LD, Ekastuti DR, Junior MZ, Rahminiwati M, Sunarma A, Manalu W (2020) Reproductive performances and egg qualities in African catfish (Clarias gariepinus) broodstocks supplemented with curcumin and thyroxine hormone. Omni-Akuatika 16:32–47

    Article  Google Scholar 

  • Reddy ACP, Lokesh B (1994) Effect of dietary turmeric (Curcuma longa) on iron-induced lipid peroxidation in the rat liver. Food Chem Toxicol 32:279–283

    Article  CAS  Google Scholar 

  • Rukkumani R, Balasubashini MS, Menon VP (2003) Protective effects of curcumin and photo-irradiated curcumin on circulatory lipids and lipid peroxidation products in alcohol and polyunsaturated fatty acid-induced toxicity. Phytother Res 17:925–929

    Article  CAS  Google Scholar 

  • Saccol EMH, Toni C, Pês TS, Ourique GM, Gressler LT, Silva LVF, Mourão RHV, Oliveira RB, Baldisserotto B, Pavanato MA (2017) Anaesthetic and antioxidant effects of Myrcia sylvatica (G. Mey.) DC. and Curcuma longa L. essential oils on tambaqui (Colossoma macropomum). Aquac Res 48:2012–2031

    Article  CAS  Google Scholar 

  • Sahu S, Das BK, Mishra BK, Pradhan J, Samal SK, Sarangi N (2008) Effect of dietary Curcuma longa on enzymatic and immunological profiles of rohu, Labeo rohita (Ham.), infected with Aeromonas hydrophila. Aquac Res 39:1720–1730

    Article  CAS  Google Scholar 

  • Salah AS, Mahmoud MA, Ahmed-Farid OA, El-Tarabany MS (2019) Effects of dietary curcumin and acetylsalicylic acid supplements on performance, muscle amino acid and fatty acid profiles, antioxidant biomarkers and blood chemistry of heat-stressed broiler chickens. J Therm Biol 84:259–265

    Article  CAS  Google Scholar 

  • Shah BR, Mraz J (2020) Advances in nanotechnology for sustainable aquaculture and fisheries. Rev Aquac 12:925–942

    Article  Google Scholar 

  • Somparn P, Phisalaphong C, Nakornchai S, Unchern S, Morales NP (2007) Comparative antioxidant activities of curcumin and its demethoxy and hydrogenated derivatives. Biol Pharm Bull 30:74–78

    Article  CAS  Google Scholar 

  • Tayemeh MB, Esmailbeigi M, Shirdel I, Joo HS, Johari SA, Banan A, Nourani H, Mashhadi H, Jami MJ, Tabarrok M (2020) Perturbation of fatty acid composition, pigments, and growth indices of Chlorella vulgaris in response to silver ions and nanoparticles: A new holistic understanding of hidden ecotoxicological aspect of pollutants. Chemosphere 238:124576

    Article  Google Scholar 

  • Tsikas D (2017) Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal Biochem 524:13–30

    Article  CAS  Google Scholar 

  • Vadlapudi AD, Mitra AK (2013) Nanomicelles: an emerging platform for drug delivery to the eye. Ther Deliv 4:1–3

    Article  CAS  Google Scholar 

  • Vaishya RD, Khurana V, Patel S, Mitra AK (2014) Controlled ocular drug delivery with nanomicelles. WIREs Nanomed Nanobiotechnol 6:422–437

    Article  CAS  Google Scholar 

  • Veglio F, Beolchini F, Gasbarro A (1997) Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Process Biochem 32:99–105

    Article  CAS  Google Scholar 

  • Veisi S, Johari SA, Tyler CR, Mansouri B, Esmaeilbeigi M (2021) Antioxidant properties of dietary supplements of free and nanoencapsulated silymarin and their ameliorative effects on silver nanoparticles induced oxidative stress in Nile tilapia (Oreochromis niloticus). Environ Sci Pollut Res 28:26055–26063

    Article  CAS  Google Scholar 

  • Wu Y, Zhou Q (2013) Silver nanoparticles cause oxidative damage and histological changes in medaka (Oryzias latipes) after 14 days of exposure. Environ Toxicol Chem 32:165–173

    Article  CAS  Google Scholar 

  • Yu S-j, Y-g Y, J-f L (2013) Silver nanoparticles in the environment. Environ Sci Process Impacts 15:78–92

    Article  Google Scholar 

  • Yusuf M, Hassan MA, Tag HM, Sarivistava K, Reddy P, Hassan A (2017) Influence of turmeric (Curcuma longa) on performance, histomorphology and microbiota of intestine in juvenile tilapia (Oreochromis niloticus). Int J Agric Sci Vet Med 5:7–16

    Google Scholar 

  • Zeumer R, Hermsen L, Kaegi R, Kühr S, Knopf B, Schlechtriem C (2020) Bioavailability of silver from wastewater and planktonic food borne silver nanoparticles in the rainbow trout Oncorhynchus mykiss. Sci Total Environ 706:135695

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Exir Nano Sina Co. (Iran) for donating nanomicelles encapsulated curcumin (SinaCurcumin®).

Availability of data and materials

All data and materials are included in this published article.

Funding

This work was supported by the University of Kurdistan (Grant number: GRC97-06503-1).

Author information

Authors and Affiliations

Authors

Contributions

FP: investigation, data curation; SM: investigation; SA: investigation, data curation, writing—original draft preparation; SAJ: supervision, conceptualization, methodology, funding acquisition, project administration, writing—review and editing; EG: investigation; HPK: investigation; IJY: conceptualization, methodology

Corresponding author

Correspondence to Seyed Ali Johari.

Ethics declarations

Ethics approval

All animal manipulation procedures were done based on Animal Welfare Act and Interagency Research Animal Committee guidelines (Nickum et al. 2004).

Consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare no competing interests.

Additional information

Responsible Editor: Bruno Nunes

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirani, F., Moradi, S., Ashouri, S. et al. Dietary supplementation with curcumin nanomicelles, curcumin, and turmeric affects growth performance and silver nanoparticle toxicity in Cyprinus carpio. Environ Sci Pollut Res 28, 64706–64718 (2021). https://doi.org/10.1007/s11356-021-15538-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-021-15538-2

Keywords

Navigation